
Asymptotic critical behaviour of quenched random-exchange Heisenberg ferromagnets

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 7403

(http://iopscience.iop.org/0953-8984/6/36/022)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 20:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/36
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
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Asymptotic critical behaviour of quenched random-exchange 
Heisenberg ferromagnets 
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School of Physics. University of Hyderabad. Central University Post Office, Hydembad 
500 134, Andha Pmdesh. India 

Received 14 January 1994, in final form 13 Apnl 1994 

Abstraer Asymptotic and leading 'correction-to-scaling' critical exponents and critical 
amplitudes for uwf ie ld  specific heat, spontaneous magnetization and initial susceptibility have 
been accurately detemuned for quenched random-exchange Heisenberg ferromagnets through an 
elaborate analysis of hizhly precise elecuicd resistivity, bulk magnetimtion and AC susceptibility 
data taken on amorphous FexNign.x(B,Si)x (x = 10. 13, 16 and 20) alloys in the critical 
region. The values of critical exponenu and universal critical amplitude ratios so obtained do 
not depend on composition and conform very well with the corresponding estimates given by 
the renormaliwtion-group calculations for quenched random s u e  and bond-diluted Heisenbez 
ferromagnets. The amplitude ntias aAla,I and a: /a:,. which me characteristic of femmagnets 
with quenched m d o m  disorder and for which no theoreticd estimates are presenuy available, 
seem to possess universal chancter for they too are composition-independent. The experimental 
results =e consistent with the concept of scaling in thQ the exponent equalities a+ = E - ,  

,9+y =,9Sanda+y =2(1-,9)meobeyedtoahighdegreeofaccuncyandthemagnetiration 
data satisfy the swling equation of state chmcteristic of second-order phase transition. The 
effect of the isotropic long-range d ipoh  interactions on the asymptotic critical behaviour is 
mainly felt through the enhanced value of the A+/A-  ntio. Only o small fraction of moments 
actually participates m the ferr~magnetic(FM)-pa~gn~t,~(PM) phase mi t iOD for the alloys 
with Fe concentration x not very far from. but above, the critical concenmtion ,zc and this 
fraction reduces furlher at a npid rate as xc is approached along the FM-PM phase transition line 
in the magnetic phae diagram 

1. Introduction 

Study of critical phenomena in quenched random sitediluted (RSDH) and bond-diluted 
(RBDH) Heisenberg ferromagnets has been actively pursued for more than a decade now, 
and yet the nature of phase transitions in these systems has defied a clear understanding so 
far. Conflicting theoretical predictions and inconclusive experimental results seem to be at 
the root of this situation as elucidated below. Theoretical attempts to calculate the magnetic 
susceptibility critical exponent y for RSDH and RBDH spin systems using the high-temperature 
series expansion method have yielded widely different functional dependences of y on the 
concentration x of the magnetic impurities; as x is lowered towards the percolation threshold 
xc (critical concentration at which long-range ferromagnetic order first appears). y increases 
rapidly from its value (E 1.4) in the pure or concentrated limit (i.e. x E 1) to a value as 
high as 2.5 at a concentration well above x, for RSDH system [l], whereas it stays constant 
at its pure value in the entire concentration range xc < x < 1 for RBDH ferromagnets [2].  
Similarly, the so-called 'conventional' renormalization-group (RG) calculations [3-71, based 
on the random-exchange Heisenberg model (REHM), which includes both quenched RSDH 
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and RBDH models, assert the following: (i) The addition of short-range frozen (quenched) 
disorder to a pure (ordered) spin system, which undergoes a second-order phase transition 
at a temperature Tc (Curie point), does not afect the sharpness and other critical properties 
of the transition if the specific heat critical exponent of the pure system, up, is negative (this 
result is better known as the Hanis criterion [SI). (ii) The critical exponents, characterizing 
the paramagnetic(PM)-ferromagnetic(FM) phase transition in m, do not depend on x .  
(iii) In the presence of a (quenched) disorder, which introduces long-range correlations in 
the spin system, the FM-PM transition should get ‘smeared’ even if ap e 0. These assertions 
contrast with the predictions of the so-called ‘unconventional’ RG treatment [9-11] of REHM: 
(i) that a pure isotropic Heisenberg fixed point is stable only in the weak-disorder limit (i.e. 
for x --f I); (ii) a crossover from pure to new critical exponents, which depend on x ,  
occurs at a composition-dependent temperature E&) (= (T - T,)/T, at T = T&), e.g. 
cm N IOo for x + 1 whereas for x + xc (strong-disorder limit), tU, > 10’) even for a spin 
system with up c 0; and (iii) in the extreme-disorder limit ( x  N xc) ,  the critical exponents 
assume the Fisher-renonnalized tricritical exponent values (which are the same as those 
given by the three-dimensional (3D) spherical model, i.e. a = -1.0, p = O S ,  y = 2.0, 
6 = 5.0, U = 1.0, q = 0.0) over a wide range of temperatures extending [9] from E rr IO2 
down to E N lo-* regardless of the dimension of the order parameter and of the range 
and type of interaction between spins. Though the ’unconventional’ RG theories, as a result 
of the recent modifications [12], now support the validity of the H m i s  criterion even for 
compositions very close to x, and for temperatures E < they still predict composition- 
dependent effective critical exponents in the temperature range < E < lo-]. Note 
that the ‘conventional’ and ‘unconventional’ RG theories are conceptually different. The 
former set of theories follow two main approaches and both of them yield identical results. 
In the first approach [3], RG is used to derive the recursion relations for the probability 
distributions for the random potentials (which characterize quenched random spin systems) 
and the critical properties arc determined by the fixed points of these recursion relations. In 
the second approach [5], a translationally invariant ‘effective’ Hamiltonian ‘H is obtained 
by averaging a spin correlation function of the dilute continuous-spin system with respect 
to the random variables characterizing the dilution and then RG is employed to investigate 
the critical behaviour of ‘H. By contrast, the latter set of RG theories [9-12] use an effective 
Hamiltonian that treats a quenched random system formally as an equilibrium system by 
introducing forces of constraints. Alternatively, i t  is assumed that the forces of constraints 
establish a ‘fictitious thermodynamic equilibrium’ and thereby transform the spin system 
with quenched disorder into one with annealed disorder. 

Critical behaviour near the FM-PM phase transition has been experimentally investigated 
in the temperature range < E < lo-’ in a large number of amorphous magnetic 
materials [13.14] that include 3d transition metal (TM)-metalloid (M), 3d TM-4d TM and 
rare earth-3d TM alloys. However, a direct comparison of the experimental results with the 
theoretical predictions, in most cases, is rendered meaningless due to either serious flaws 
in the data analysis or failure in achieving the required sensitivity in a given measurement 
or both [13]. A compilation [15] of the best experimental values (arrived at by using 
the ‘single power-law’ analysis) reported [13,14,16-241 to date for the critical exponents 
a, p ,  y and 6, which describe the singular behaviour of specific heat C ( T ) ,  spontaneous 
magnetization M,(T), initial susceptibility xo(T) and the magnetization versus magnetic 
field (M versus H )  isotherm at Tc, respectively, in the case of amorphous a-(Nil-,Fe,)-M 
and (F~I -~TM~)-M (TM = Cr or Mn) alloys demonstrates the following [15]: (i) The critical 
exponents for the alloys with x + 1 and y + 0 (i.e. in the weak-disorder limit) possess 
values (a N -0.2, p N 0.4, y N 1.31 and 6 N 4.4) that are fairly close to, but systematically 
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shifted away from, those (a N -0.11, p = 0.365, y = 1.386 and 6 E 4.8) theoretically 
predicted for a 3D isotropic Heisenberg ferromagnet; the experimentally determined values 
(except for the exponent 01)  are shifted towards the mean-field values (a = 0, j3 = 0.5, 
y = 1 and 6 = 3). (ii) The values of critical exponents increasingly deviate from those of 
the pure system as increasing amount of disorder is introduced into the spin system either 
by a progressive magnetic dilution (accomplished by replacing an increasing amount of Fe 
by Ni, since Ni atom carries a negligibly small moment [25] in a-(Fe,-,Ni,)-M alloys) 
or by a partial substitution of Fe by Cr or Mn (resulting in a reduction in the number of 
Fe-Fe ferromagnetically coupled pairs and a concomitant increase in the number of Fe-Cr 
or Fe-Mn antiferromagnetically coupled pairs). (iii) In the limit x -+ xc, the sign of such 
deviations depends upon whether the 3d TM replacing Fe in the above-mentioned alloy series 
occupies a place in the periodic table to its immediate left (e.g. Cr, Mn) or right (e.g. Ni). 
(iv) The exponents do not attain the Fisher-renormalized tricritical values at x N xc.  While 
the deviations from the predictions of the 3D nearest-neighbour (NN) Heisenberg model are 
generally attributed [ 131 to long-range isotropic dipolar or Ruderman-Kittel-Kasuya-Yosida 
(RKKY) interactions and/or isotropic Heisenberg interactions extending well beyond the NN 
distance [16,26], the dependence of critical exponents on composition is taken to imply 
[21,27,28] that the ‘unconventional’ RG theories describe the critical behaviour of REHM 
systems correctly. A careful examination of the above findings (i)-(iv), however, reveals 
that the observed trends are inconsistent with the predictions of both ‘conventional’ and 
‘unconventional’ RG theories. 

Recently, an elaborate analysis [29,30], which takes into account the leading ‘correction- 
to-scaling’ (CTS) terms, of highly accurate ‘zero-field’ susceptibility, xo(T), and electrical 
resistivity, p ( T ) ,  data taken on a-Fe,Niso-,B19Sil alloys in the critical region has yielded 
true asymptotic values of the critical exponents y and 01 that do not depend on composition 
and are indistinguishable (within the error limits) from the corresponding values given 
by the RG theory [31] for pure isotropic spin systems with space (d) as well as spin 
( n )  dimensionality of 3 (i.e. systems with d = n = 3). The results of this analysis 
have also demonstrated that the systematic deviations in the case of the exponents y 
and (Y observed earlier can be traced back to the customary practice of neglecting the 
CTS terms completely and using the ‘single power-law’ method to analyse the data taken 
over a range of temperatures that embraces the critical region. The spurious nature of 
the deviations suggests that the previously determined values of the exponents p and 6 
are not true asymptotic values, and that a reanalysis, which gives due consideration to the 
confluent singularity terms, of tbe bulk magnetization data already available [ 13,14,17,22] 
on some compositions in the glassy alloy series a-FeXNiso-,Bl9Sil is called for. However, 
inclusion of the CTS terms in the data analysis demands a far greater precision in the 
measurements than achieved hitherto. This realization prompted us to undertake high- 
precision magnetization measurements on the amorphous alloys with x = 10, 13, and 16 in 
the above-mentioned series and on a-FezoNisoBlo. Moreover, we have taken new sets of AC 
(‘zero-field‘) susceptibility, xo(T),  data on samples (with composition x = 10, 13 and 16) 
the same as those used in our recent resistivity, p ( T ) ,  measurements [30] and then performed 
magnetization, M ( H ,  T), measurements on them with a view to test the validity of the claim 
recently made by Giintzel and Westerholt [28] that the low-field AC susceptibility is not well 
suited to study critical behaviour in metallic glasses and to investigate in depth the possible 
bearing of deviations from the straight-line Arrott plot isotherms observed [ 13,14,22,24,28] 
at low fields, usually encountered in amorphous ferromagnets, on the critical behaviour. The 
fact that all three physical quantities, i.e. p(T) .  xo(T) and M ( H ,  T ) ,  have been measured for 
the sume alloy ribbons not only permits a detailed comparison between the results of xo(T) 
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and M ( H ,  T )  measurements in the critical region but also gets rid of the complications 
arising from the variations in composition, if present, in samples from the same (different) 
alloy batch (batches). 

S N KauI and M S Rao 

2. Experimental details 

Amorphous (a-) Fe,Nig0-~Bl&3l ( x  = 10, 13, 16) and FeZoNimBzo alloys were prepared in 
the form of long ribbons of cross section 0.04 x 2 mmz by the single-roller melt-quenching 
technique under high-purity argon (inert) atmosphere. That the ribbons so fabricated are in 
the amorphous state was verified by the x-ray diffraction method using MO K, radiation 
and later confirmed by the high-resolution electron microscopic technique. A detailed 
compositional analysis 1291 was then carried out on ribbons that did not reveal any crystalline 
regions upon electron microscopic examination. From such an analysis and the observed 
composition dependence [ 13-15,17,20,22,25,29,30] of  T,, the concentration fluctuations 
in the samples in question are expected to give rise to fluctuations in Tc of the order 
ST, N 0.1 K. Our recent resistivity results 1301 on a-Fe,Ni~o-,Bl&l alloys do indeed 
show that the ‘rounding’ of the transition at Tc occurs for IT - Tc[ c 0.1 K. Therefore, 
the data taken in the reduced temperature range < STJT, have been excluded from the 
analysis. 

Previous high-resolution (relative accuracy better than 1 ppm) electrical resistivity 
measurements [30] cmied  out on a-Fe,Niso,Bl&il (x = 10, 13, 16) alloy ribbons of 
length 60 mm using the four-probe DC method were extended to yet another composition a- 
FemNisoBzo. The p(T) data on this sample were taken at temperatures 2 30 mK apart in the 
region -0.1 S E  = (T-Tc) /Tc  < 0.1 keepingsample temperatureconstant at agiven setting 
to within f 1 0  mK by means of a proportional, integral and derivative (PID) temperature 
controller. Other relevant details regarding these measurements are given in our earlier 
paper [30]. The 60 mm long resistivity sample (ribbon piece) of a given alloy composition 
was cut into three strips, each N 20 mm in length, which were then stacked one above 
the other to form the sample for AC susceptibility, xaC(T), measurements. High-precision 
(relative accuracy better than 10 ppm) xaC(T) data were recorded on the samples with 
composition n = 10, 13 and 16 (similar measurements on the FemNisoBzo sample could not 
be carried out because its Curie temperature lies just above the maximum temperature that 
the experimental set-up can presently handle) at 25 mK intervals in the temperature range 
-0.05 < E < 0.05 in a RMS AC driving field of Ha, = 100 mOe and frequency 87 Hz, using 
the mutual inductance method [31]. The sample temperature, monitored by a precalibrated 
platinum resistance sensor, as in the p(T)  case, was kept constant to within & I O  mK during 
the measurement period at every fixed temperature setting by the PR) temperature controller. 
Magnetization (M) versus magnetic field (Hex)  isotherms (temperature stability better than 
i40 mK) were measured at 0.15 K intervals in the critical region -0.05 < e < 0.05 
and at temperatures 5 K apart for 6 =- 0.05 by means of the PAR 4500 vibrating sample 
magnetometer in fields up to 10 kOe on a-Fe,Nim,(B,Si)u, alloys with x = 10, 13, 16 
and 20. Each isotherm was obtained by measuring M at 25 predetermined but fixed (to 
within f l  Oe) values of Hex in the range 0.1 kOe < He. < 10 kOe. The sample employed 
for M(H,, T )  measurements was in the form of a pile of twelve rr. 5 mm long pieces cut 
from three N 20 mm long strips (one 60 mm long strip) of composition x = 10 or 13 
or 16 in the amorphous alloy series Fe,Niso-,Bl& (FezoN&Bzo) used earlier for x&) 
( p ( T ) )  measurements. The sample temperature was measured by precalibrated platinum 
resistance sensor and copperxonstantan thermocouple for temperatures below and above 
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300 K, respectively. HE and Hm were directed along the length of the strips within the 
ribbon plane in xaC(T) and M(H,, T) measurements to minimize the demagnetizing effects. 
The demagnetizing factor for the samples used in both these measurements was determined 
by the low-field (< 20 Oe) magnetization data and the external field, Hex. was corrected 
for the demagnetizing field, Haem, to obtain the field, H = Hex - Hdm, experienced by the 
spins within the sample. 

3. Results and data analysis 

3.1. Zero-field specific heat and iemperaiure derivative of resistiviq 

For concentrations close to, but higher than, the critical concentration xc. only a small 
fraction of spins actually participates in the m - P M  phase transition [ 13,14, 171 and this 
fraction decreases rapidly as x + x:, implying thereby that a small amount of magnetic 
entropy is released at T, for such systems. As a consequence, it is impossible to detect 
the singularity in the magnetic part of specific heat, C,&), at T, for alloys with x Y x: 
even under the most favourable conditions. An effective way to tackle this problem is 
to exploit the well known relation [32]. i.e. dp,&)/dT o( C M ( T ) ,  between CM and the 
temperature derivative of the magnetic part of electrical resistivity for temperatures in the 
close proximity to Tc and study the critical behaviour of CM(T) indirectly by measuring 
p ( T )  in the critical region. An accuracy greater by three or more orders of magnitude 
routinely achieved in resistivity measurements than in specific heat measurements permits 
detection of the anomaly at T, with ease. That a direct correlation between dpM(T)/dT and 
CM(T) in the critical region exists in spin systems with quenched disorder has previously 
been experimentally demonstrated [33,34] for several amorphous TM-M alloys including 
one of the alloys of present interest [34], i.e. F-NisoBm. 

The temperature derivative of resistivity (evaluated by the three-point differentiation 
method) normalized to the value of resistivity at T, (dp(T)/dT)/p(T) cq, as a function 
of temperature in the reduced temperature range -0.05 < E < 0.05 for a-FezoNisoB20 is 
shown in figure 1. The previously published [30] q ( T )  data on the amorphous alloys 
with x = 10, 13 and 16 in the series FexNi80-xB1$31 are also included in this figure for 
comparison. The data for the former sample have been analysed in the same manner as 
those for the latter alloys. We only briefly outline the method of analysis here since the 
details have already been given elsewhere [30]. Theoretical fit to the q ( T )  data is attempted 
based on the expression 

(where the plus and minus signs denote temperatures above and below Tc, and A* (a:, 
a:) and or*(A,, A*) are the asymptotic (leading 'correction-to-scaling') critical amplitudes 
and critical exponents, respectively) given by the so-called 'conventional' RG theories [3- 
7,15,30,35,36]. These theories consider the quenched disorder in d = n = 3 NN isotropic 
spin system as an irrelevant scaling field and hence predict that an additional leading 
confluent correction term, characterized by the exponent [6,7,29,35,36] A, = lap], should 
appear in (1) besides the one present in pure systems and involving the exponent Az. By 
contrast, the so-called modified 'unconventional' RG theories [12] assert that the efleciive 
critical exponents U$, corresponding to the case when a; = 02 = 0 in (l), are composiiion- 
dependent unless T, is approached closer than E Y W6. In view of the above theoretical 
predictions, to begin with, we fit the ru,(T) data for T c Tc and T > T, separately to 
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a single power law by setting a: = a; = 0 in (1) and use a range-of-fit analysis in 
which the change, if any, in the values of the fitting parameters A*, E", a* and T," 
is monitored as the temperature range (€miD Q E < E-) of the fit is narrowed down 
by raising (lowering) 6min (E,) towards E,, (€min) while keeping emax (emin) fixed at a 
given value. The results of this single power-law analysis (henceforth referred to as AA) 
for a-FezoNiaB20 coupled with those yielded by the same analysis for other compositions 
( x  = 10, 13, 16) previously [30] present the following main features. (i) T; = <+ and 
a- N a+ within the error limits. (ii) The exponent a stays constant in a narrow temperature 
interval I&l Q 161 Q IE&J only and within that interval its value a = -0.15 4 0.02 is 
independent (within the error limits) of the Fe concentration. (iii) The ratios A + / A -  N 1.55 
and [E+ - ( A + / a + ) ] / [ B - -  ( A - / a - ) ]  = 1.6 regardless of the Fe concentration. Failure of 
data to satisfy the equality B + - ( A + / a + )  = E--(A-/a-) dictated by the requirement that, 
for a < 0, dp+/dT = dp-/dT at T = Tc, necessitates inclusion of the confluent singularity 
terms in  the analysis. As a first step in this direction, a,(T) data for T c T, and T > Tc 
have been least-squares fitted to the expression that includes the first leading correction term 
only, i.e. equation (1) with ah = 0, and agreement with the experimental data is optimized 
by varying the parameters A*, E*, a*, T:, U: and A l .  Though these fits are superior 
to the 'single power-law' fits and the values of T,' and a* are reasonably accurate (e.g. 
a- 2: a+ = -0.1 15 4 O.OOS), values of A*, E*, a: and A I  fluctuate a lot when the range 
of fit is altered. We therefore fit the a,(T) data to (1) for T < Tc and T > Tc separately, 
using the range-of-fit analysis and a non-linear least-squares-fit computer program that treats 
A*, E*, a*, a:, a; and T$ as free fitting parameters, but keeps A, and A? fixed at a 
given value in the ranges 0.01 < A1 < 0.20 and 0.35 < A2 < 0.75. The same procedure is 
repeated for another fixed set of values for AI and 8 2 .  which differ from the previous ones 
by &0.01. Best fits, as inferred from the least values of the sum of the deviation squares, 
x 2 ,  are obtained for AI = 0.11 * 0.05 and A2 = 0.55 k 0.08, with the values for the 
remaining parameters that have an undesirably large uncertainty (e.g. typical values for the 
asymptotic exponent are a+ = -0.1 15&0.015 and a- = -0.120&0.015) but are otherwise 
close to those determined by the following procedure and listed in  table 1. Realizing that 
the large uncertainty mainly stems from the correlation between different parameters in 
a multiparameter fit, and that the above values of AI and A2 conform very well with thc 
theoretically predicted [36-381 estimates, substantial reduction in the uncertainty is achieved 
by imposing the condition TF = T$ and by keeping A ,  and A2 constant at A I  = 0.11 
and A2 = 0.55. With these constraints, the range-of-fit analysis and the least-squares fitting 
method (the 'so-called' c ~ s  analysis) yield the most optimal values for the parameters T,", 
a*, A*, E * ,  a: and U; displayed in table 1. The theoretical fits based on these parameter 
values and denoted in figure 1 by the full curves can be seen to describe the observed 
variation of a,(T) very well for 161 < the data points start deviating from these fits 
for 161 z Idm[. This observation is made all the more obvious by the deviation plot shown 
in figure 2 for a-FemNis0BZo. From figure 2, which depicts the percentage deviation of the 
data from the best AA or CTS fit as a function of reduced temperature, it is evident that 
the CTS fits closely reproduce the observed variation of ay with T over a wide temperature 
range whereas the AA fits present systematic deviations from the actual data in the entire 
temperature range covered in the fits. Thus, the data presented in figure 2 highlight the 
importance of the CTS terms and assert that the CTS analysis provides an accurate means 
of determining the asymptotic and correction-to-scaling critical exponents and amplitudes 
as well as the crussover temperature [ E J ,  which, in turn, determines the extent of the 
asymptotic critical region in the materials under consideration. The same inference can be 
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I &CO 
n l  I I t I " 
-0.05 -0.03 -0.01 0.01 0.03 0.1 

E = ( T - T ~ ) / T ~  
5 

Figure 1. Normalized tempenrut derivative of resistivity as a function of reduced temperature 
for amorphous FeXNig~~,(B,Si)2o alloys in the rmge -0.05 < F = (T - Tc)/Tc < 0.05. The 
full curves lhrough fhe data points x e  theoretical fits based on equation (1). For the sake of 
clmity, only one-eighlh of lhe total number of data points are shown in this figure and the datl 
points corresponding to lemperams in the immediate vicinity of T, are deleted. Note that the 
zero on the ordinate sule should read as 1, 2 m d  3, respectively, for the alloys with x = 13. 
16 md 20. 

drawn from the deviation plots for the alloys with x = 10, 13 and 16 shown in figure 8 of 
~301. 

3.2. 'Zero-j'ield' susceptibility 

The observed variation of Ac susceptibility, corrected for demagnetization, i.e. x0(c)  = 
Xmens(c)/[l - Nxmem(6)] where N is the demagnetizing factor, with temperature in the 
critical region is depicted in figure 3. The 'conventional' RG theories [3-7,15,29,35,36] 
yield a temperature dependence of 'zero-field' (initial) susceptibility, ,yo(€), for temperatures 
( E  > 0) not too close to T, of the form 

,yo(€) = r € - y ( i  +a;,c4' +a;,e4*) t > o (2) 

which includes the leading 'correction-to-scaling' (CTS) confluent singularity terms. 
Experimentally, however. it is customary to fit xo(t) data taken over a fairly wide 
temperature range near T, to a single power law 

~ ~ ( 6 )  = reflE-ym o (3) 

where ref and  ye^ are the effective critical amplitude and critical exponent, respectively. 
According to the 'unconventional' RG theories [9-121, equation (3) describes the temperature 
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E = ( T-T,)/T, 
Figure 2. Percentlge deviation of the e,(T)  darn from the best AA (O), bused on equation (1) 
With a: and a,$ set equal to zero and the choice of parameters A” = 0.12 x K-’ 
(A-  = 0.065 x IO-’ K-’), B+ = 0.103 x IO-’ K-’ (B-  = 0.42 x IO-’ K-’) and (I* = -0.14 
(a- = -0.18). and ms (0). based on equation (1) with the choice of the parameters given in 
oble I ,  least-squares fits. The m o w s  indicae the ~rossover temperature eEo. 

variation of X O ( E )  in the crossover region correctly and y a  is composition-dependent. 
Considering the relation that exists between yea and y for temperatures very close [29] 
to T,, i.e. 

y & ( ~ )  = d[lnX;’(E)]/d(lnE) = y - a i lA teAj  -a i2AzeA1  (4) 

ydf could significantly differ from the theoretically (‘conventional’ RG theories) predicted 
asymptotic (universal) critical exponent y and it is only in the limit E + O+ that y e ~ ( t )  
coincides with y ,  i.e. y = lime 3 O+[yef i (~)] .  The corresponding relation between rea 
and r is [29] 

reff(€) = r(1 + a;IEAi + a ; E A ’ ) E - O ~ , A ~ . A ’ + ~ ~ ~ * ~ ~ A * )  - - r N  (5 )  

where N represents the expression by which r is multiplied to yield the product rea in (5). 
It is evident from equations (2)-(5) that a prior knowledge of Ffi, yea and T, is required for 
extracting values of F, y ,  ai l ,  a:z, A ,  and A2 from the X O ( E )  data. High accuracy in the 
determination of Tc and yea (and hence of rea) is achieved by a method [39] (henceforth 
referred to as the KF analysis) that makes use of the following alternative form of equation 
(3), i.e. 

X ( T )  E ~g’(T)[d~c‘ (T) /dTl - ’  = (T - T c ) / ~ e a =  (Glyetrk. (6) 
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Figure 3. Variation ofinitid (Act susceptibility with tempemure in Lhe mge -0.05 < c < 0.05. 
Note the change of scale for the data of the dloys wilh x = IO, 13 and 16. For the sake of 
clarity. only one-qumer of the tow number of data points %e shown in this figure. 

According to this method, the X ( T )  versus T plot in the asymptotic critical region (ACR), 
where xo(T)  can be approximated by a power law (equation (3)), is a straight line whose 
slope is l/ye,f and intercept on the T axis yields T, (note that if the value of c, determined 
by the KF analysis, is used to construct the X ( T )  versus E plot in the ACR, the resulting 
plot should, again, be a straight line but now this straight line passes through the origin and 
possesses a slope T,/y,a, cf equation (6)). The X ( T )  versus E plots shown in figure 4 for 
the amorphous alloys with x = 10, 13 and 16 testify to the validity of equation (6) (and 
hence of equation (3)) in a narrow temperature range above T,. Data points, however, start 
deviating from the least-squares-fitted straight lines at a temperature E ,  (shown in figure 4 
by downward arrows) and the deviations grow as 6 is increased above 6,. In view of the 
definition 

~ a ( 6 )  = [ X O ( E )  d x ~ ' ( 4 / d ~ l ~  = lTc/X(T)I~ (7 ) 

such deviations imply that yea(€) increases for E z This behaviour of yea(<) has 
come to be known as a characteristic [13,14,21,22,24,27] property of quenched-disordered 
ferromagnets. Accurate values for the parameters r, y .  U:,, a& A I  and A2 listed in table 2 
are then determined by fitting equations (4) and (5) to the y e ~ ( c )  and rea(€) data, depicted 
in figures 5 and 6 and computed from equations (7) and (3) using lhe value of Tc deduced 
by the KF analysis of the X O ( C )  data, by means of the non-linear least-squares fitting method. 
The best theoretical fits to the data so obtained are shown as full curves in figures 5 and 6. 
In order to verify whether or not the above analysis yields correct values for the parameters 
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Flgure 4. TemperaNE dependence of the quantity X(T) x;'!dx[l/dT)-l in the cnticd 
region. Note that only one-qunrter of the total number of data points are shown in this figure 
to maintain clarity and c ,  denotes the temperature beyond which the data deviate from the 
least-squme fits (full stmight lines through the data points) based on equation (6). 

of interest, we have constructed the plots of [ y  - y e a ( 6 ) ] / A ~ &  against AzsAZ/AlcA' and 
Tea(€) against N, based on the modified [29] version of equation (4) ,  i.e. 

[ y  - y e d 6 ) l / A ~ t A '  = a;1 + a & ( A z t A z / A l c A 1 )  (8) 

and equation (5),  respectively, with the choice of the parameters given in table 2. Such 
plots displayed in figures 7 and 8 demonstrate that, consistent with equations (8) and (9, 
these plots are straight lines with slopes a& and r, and intercepts on the ordinates a+ and 
0, respectively. In order to bring out clearly the importance of the CTS terms, the deviation 
plots for the alloys with x = 10, 13 and 16 are shown in figure 9. The XO(E) data, like 
the dp(T)/dT data, can be seen to exhibit systematic deviations from the KF fits (which 
totally ignore the CTS terms) throughout the temperature range of the fits, whereas they are 
evenly scattered around the calculated values in the case of the CTS fits. Moreover, such 
plots serve as a cross-check for the values of r, y ,  a;,, a:%, AI and A2 determined by the 
above method. 

3.3. Bulk magnetization 

'Zero-field' quantities like spontaneous magnetization (M,) and initial susceptibility (,yo) 
have been estimated from the magnetization ( M )  data taken in finite external magnetic fields 
(H,) at different temperatures by means of two different extrapolation methods, AA-I and 
AA-11. In the AA-I method, the 'raw' magnetization data are converted into a set of M 2  versus 
( H I M )  isotherms, which constitute the well known Arrott-Kouvel (AK) plot (figure 10) and 
upon parabolic extrapolation [13,14,16,17] to ( H I M )  = 0 and M2 = 0 yield intercepts 
on M 2  and H I M  axes equal to @ ( T )  for T < T, and x;'(T) for T 5 T,. By contrast, in 

X! 
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Figure 5. Variation of the effective CritiCd exponent for susceptibility, y a ( < ) ,  with reduced 
temperature in the range 0 d c d 0.06. Full curves through the data point3 are the least-squares 
theoretical fill based on equation (4) while the emor limits give the me3sure of uncertainty m 
yen(c) due to uncertainty in T,. 

the AA-11 method, the M ( H  = He. - Hdem, T )  data are used to construct the modified Arrott 
plot (i.e. M'lB versus ( H / M ) ' / Y  plot shown in figure 1 I), in which the critical exponents 

and y are varied until M'lo  versus ( H / M ) ' l v  isotherms in a narrow temperature range 
around T, are straight and parallel to one another over as wide a range of ( H I M )  values as 
possible, and the quantities M,(T) and x;'(T) are then computed from the intercepts on 
the M1lB and (H/M)' lY  axes obtained by a linear extrapolation [13,14,19,22,24] of the 
high-field linear portions of the isotherms to (H/M)' lY  = 0 and M'/B = 0. Note that the 
AA-U method gives more importance to the high-field data than to the low-field data (i.e. 
significant deviations from the straight-line behaviour do occur at low fields for isotherms 
taken at temperatures well below and above Tc, see figure 11) whereas the AA-I method 
gives equal weight to the high- and low-field data. Another important observation [13], 
which has a direct bearing on the outcome of these extrapolation methods, is that the AK 
isotherms exhibit increased concave-downward curvature at low fields for T < T, as the 
composition x + xc so that large gradients near the M Z  axis can introduce large systematic 
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errors in the determination of MSr and hence the values of the exponent ,9 and other fitting 
parameters derived from such data are less reliable than those extracted from the M,(T) 
data obtained by the AA-11 method. Figures 12 and 13 compare the corresponding sets of 
M , ( T )  and xFt(T) data obtained by these extrapolation methods for the investigated alloys 
in the critical region. In these figures, M3(T)  and x; l (T)  are plotted against the reduced 
temperature E = (T - T,)/T,; the values of T, used in these plots are displayed in tables 2 
and 3 and have been determined by the following method. 

Theoretical fits to the At,(<) and x;'(c) data have been attempted based on the 
expressions [3-13,29,35,361 

M $ ( E )  = mo(-E)#(I +a;, (-S)*I + a;*(- E)*') 

~ ~ ( 6 )  = mEff(-e)flsm E e o  (10) 

E < 0 (9) 
and 
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Figure 7. Plots of [y  - yC~(c)]/AlcAt against (A2/A1)dA2-*l) (= ( A ~ G ~ ~ / A I ~ ~ I ) )  for 
amorphous Fe,Nia,-.BwSil alloys, which make use of the choice of parameters y .  A I  and 
A2 that gives the best least-squares (U) fits to the y d c )  data based on equation (4). The 
LS straight-line fits through the data poinu yield the values far a:I (intercept on the ordinate) 
and a:2 (slope), which exactly coincide with those obtained through LS fils to the yen(€) d m  
directly (i.e. those listed in table 2) based on equation (4) and hence testify to the validity of 
equation (8). 

and the equations (2) and (3) with r 
first, in analogy with equation (6), equation (10) is cast in the alternative form 

(mo/hoj and re# = (mo/ho).E, respectively. At 

Y ( T )  K ( T ) [ d & ( T ) / d ~ l - '  (T - TJ/O&i = (Tc/Bpff)c (11) 

and then reasonably accurate values of ben and ye# and T, are obtained from the slopes and 
intercepts (on the T axis) of Y ( T )  versus T and X ( T )  versus T skaight-line plots in the 
ACR (161 < 1 ~ ~ ~ 1 ) .  The values for these quantities so deduced are tabulated in tables 2 and 3 
and used in equation (10) and (3) to determine mEff and reg whose values are also included 
in these tables. The error limits for the efecective critical amplitudes, critical exponents and 
T, have been estimated from the scatter in their values yielded by a detailed 'range-of-fit' 
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amorphous Fe,Niw-,BlsSil alloys, which m&e use of the choice of panmeters At, Az, a:, 
and a12 that gives lhe best least-squxa (LS) fits to the y&) darn based on equation (4). The 
LS straight-line fils liuough the data points yield the values for intercept on the ordinate equal 
to zero and slope equal to r and thereby demonstrate the validity of equation (5). 

analysis in the ACR. With a view to accommodate data on samples with widely different 
T, values in a single figure, the plots of X ( T )  against E and Y(T) against E are shown in 
figure 14 instead of the usual X ( T )  versus T and Y(T) versus T plots. Attempts have also 
been made to fit (10) and (3) to the M,(T) and x;'(T) data taken for It1 < lccol directly, 
with the result that the values for the parameters mEff, = (mo/ho).a, &i, yea and Tc 
so determined match very well their corresponding values deduced by the above method 
(the KF analysis). At this stage, it should be emphasized that the extrapolated M , ( T )  
and $(T) data are bound to have more scatter than the xaC(T) data which are directly 
measured because part of the accuracy of the M ( H ,  T) data is lost in the extrapolation 
(to zero field) process. The scatter in the extrapolated data gives rise to an undesirably 
large scatter in p a ( < )  and yea(<) (compare figures 15 and 16 with figure 5). which, in 
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Figure 9. Percentage deviation of lhe AC susceptibility data, xn(s), from 
symbols) and CTS (open symbols) leastsquares fits. 

the best KF (full 

turn, precludes the use of the method of analysis, employed earlier to analyse xzc(T) data 
(section 3.2), to extract reliable values for the asymptotic and leading CTS critical amplitudes 
and critical exponents from such data. We have, therefore, fitted equations (9) and (2) to 
the M,(T) and x; l (T)  data taken in the temperature range I E ~  < [ecol directly using the 
non-linear least-squares fitting computer program, which varies the fitting parameters mo 
(r-' = ho/mo), T; (T:), ,6 ( y )  and aMt (a;,) and a i a  (a:,) but keeps A, and A2 constant 
at their theoretically predicted values, i.e. AI = 0.11 and A2 = 0.55, to optimize agreement 
with the experimental Ma(€) (x;*(e)) data. The best theoretical fits (shown in figures 12, 
13, 15 and 16 by the full curves) with the chpice of the parameters given in tables 2 and 3 
obtained in this way (henceforth referred to as the CTS analysis) are superior in quality to 
those (the KF fits) based on equations (10) and (3), as inferred from a substantially reduced 
value of x 2  for the former type of fits (tables 2 and 3). Such an improvement in the 
quality of fits brought about by the inclusion of CTS terms in the theoretical expressions for 
M,(T) and x{ ' (T) ,  not so apparent from the comparison between theory and experiment 
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ArroU-Belov-Kouvel (M2 versus H I M )  plol of a-FeisNhBlgSil at a few 

(depicted in figures 15 and 16) so far as the effective critical exponents & ( E )  and yes(€) 
are concerned for reasons already mentioned, is obvious from the deviation plots shown in 
figure 17 for the data obtained by the AA-II method. Such plots are also representative of the 
nature of deviations observed for the M J T )  and x; ’ (T)  data, obtained by the AA-I method, 
from the KF and crs  fits. The important points that emerge from the analysis presented 
above (tables 2 and 3) are as follows: (i) The value of Tc does not depend on whether the 
data analysis includes the crs  terms or not, whereas the same is not true for the asymptotic 
and effective critical amplitudes and critical exponents. (ii) M J T )  and x;’(T)  data for 
a given composition obtained through the same extrapolation method (AA-! or AA-11) yield 
practically the same value for Tc. (iii) Unlike asymptotic critical exponents and ‘correction- 
to-scaling’ amplitudes, Curie temperature and asymptotic critical amplitudes depend on the 
type of extrapolation used. (iv) The AC susceptibility data and the extrapolated ‘zero-field’ 
susceptibility data yield identical values (within the uncertainty limits) for all parameters 
except for r and reff(Tc) in the m e  of the alloy with x = 10 (x = 16). Note that the 
value of Tc for the alloy with x = 16 deduced from the M ( H ,  T) data is higher than that 
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determined from the xac(T) data because the M ( H ,  T) measurements were performed after 
some amount of srructural relaxation bad occurred in the sample when it was heatedt to 
temperatures as high as 400 K during xaC(c(T) measurements. 

In order to determine the value of the critical exponent 6, the M versus H isotherms 
taken at temperatures ranging between the extreme values of T, yielded by the above- 
mentioned analysis of the extrapolated M , ( T )  and x;’(T) data, and of xac(T) data, are 
least-squares-fitted to either of the relations 

t The ’kink-point’ me3surement wken after completing the &(T) experimental run revealed slight increase in 
T, indicating thereby that some amount of stress relief had occurred in this smple. In view of this finding, the 
FqoNisnBzlr sample was annealed at different temperatures between 400 and 450 K for different durations of 
time and ‘kink-point’ (and hence T,) was monitored after every heat treatment. The elecvical resistivity and bulk 
magnetization measurements were performed on this sample only after ensuring that the subsequent annealing 
treament did not increase T, funher. It is. therefore. not surplising that bath types ( p ( T )  and M ( H ,  T)) of 
measurements yield the same value (wirhin the error limits) of T, for this sample. 
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E =o. 
H = D M ~  

It is evident from (12) that a plot of In M against In H should be a straight line with slope 
6-’ and intercept on the ordinate equal to 1nAo for the critical isotherm M ( H ,  T = Tc). 
Figure 18 depicts such a plot for a-Fel&!is4Bl&3,. A cursory glance at this figure suffices to 
reveal that only the isotherm taken at T = T, is indeed a straight line, whereas the isotherms 
for T # T, exhibit a concave-upward and concave-downward curvature for temperatures 
just below and above Tc, The curvature in such isotherms becomes more pronounced as 
the temperature at which a given isotherm is taken deviates more and more from Tc. These 
features of the M ( H ,  T )  data displayed by figure 18 represent a characteristic property that 
the amorphous alloys investigated in this work share with other amorphous ferromagnetic 
alloys studied earlier [22-241. Moreover, such plots not only allow determination of the 
critical exponent 6 and critical amplitude A. (note that the critical amplitudes D and A0 in 
equations (12) are related as D = A;’) from the slopc and intercept on the ordinate of the 
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Figure 13. Temperature dependence of the inverse initial susceptibility. xi'. in the critical 
region for amorphous Fe,Nim-,(B,Si)x alloys. Far the sake of clanty, only one-quarter of the 
total number of data points are shown in this figure. The full curves through the data paints 
denote the best least-squares fits to the data based on equation (2). 

critical isotherm, respectively, but also of the Curie temperature itself. The values of c, 6 
and D determined in this way are listed in tables 4 and 5 .  

4. Discussion 

The experimentally determined values of the asymptotic (a*, B, y .  6) and leading 
'correction-to-scaling' (AI ,  Al) critical exponents and of the universal ratios involving 
asymptotic and 'correction-to-scaling' zero-field specific heat and initial susceptibility 
amplitudes are compared with those predicted by the RG theories [35,37,38,40441 for 
pure d = n = 3 spin systems with or without isotropic dipolar long-range (IDL) interactions 
in tables 4-6. With reference to the numerical values for different physical parameters 
displayed in the tables, the main points that merit attention are the following: (i) The 
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Figure 14. The quantities X ( T )  md Y ( T ) .  deduced from the bulk magoetivtion (EM) data, as 
functions of (reduced) temperature. c = (T - T ) / T , ,  for amorphous FexNial-r(BSi)m alloys. 
In order to highlight the ;Igreement between the BM and AC susceptibility (ACS) data, the vnlues 
of the quantity X ( T )  at a few representative tempemtures obtained from the ~ c s  data (figure 4) 
are also included in this hgure. For the sake of clarity, only one.qumer (oneeighth) of the total 
number of data points for Y ( T )  ( X ( T ) )  and the KF hts only to thc X ( T )  md Y ( T )  data, deduced 
from the x;'(T)  and M , ( T )  data, obtained by the AA-11 extrapolation method, are shown in this 
figure. 

'zero-field' measurements p ( T )  and xac(T)  yield practically the same value for Tc whereas, 
considering the relatively large uncertainty in the values obtained through the extrapolation 
methods AA-I and AA-11, this vaiue also conforms well with those deduced using the methods 
AA-] and AA-11 (except for the alloy with x = 16 for the reasons already mentioned in the 
earlier section and in the footnote). (ii) The KF and CTS analyses of the x=(T) and the 
extrapolated xo(T)  data give identical (within the uncertainty limits) results. (iii) The scaling 
relations a+ = a-, p + y = ,5'6 and a + y = 2(1 - ,5') are obeyed to a high degree of 
accuracy. (iv) Consistent with a < 0, the ratio (B+ - A+/a t ) / (B -  - A - j a - )  N 1. (v) 
The exponents a*, p ,  y ,  6, A! and Az, and the amplitude ratios A + / A - ,  a:/a,, a z / a &  
a$/a l ,  and a&/a;, do not depend on composition. (vi) The ratios a:/aJ (= O.lOicO.05) 
and a: /a;, (= 7 5 2 )  characferistic of ferromagnets with quenched random disorder seem 
to be universal like the corresponding ratios a,: fa; and a:/a,: in the case of ordered 
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least-squms fits to the daw. bmd on equations (9) and (10). respectively. 

spin systems. (vii) The experimental values of a, p ,  y ,  6, A,,  Az, At/A-,  a+/a- cz EZ) 

aA/a12, mo/M,(O) and Dmi/ho match very well the RG estimates for the pure n = d = 3 
spin system with isotropic Heisenberg short-range (ISR) andlor IDL interactions, but the 
observed values of the ratio p0ho/kaTc are at least one order of magnitude lower than 
the 3D Heisenberg value. (viii) The theoretical value for the ratio mo/Ms(0) is in closer 
agreement with the values yielded by the CTS analysis than with those given by the KF 
analysis: this finding underscores the need to include the CTS terms in the data analysis. 
While an excellent agreement between the values of T, determined from p ( T )  and x.&) 
measurements (observation (i) above) refutes the earlier claim [28] that the low-field A c  
susceptibility is not well suited to study critical behaviour in metallic glasses, the 0bSm"tiOn 
(ii) asserts that the deviations from the linear modified Arrott plot isotherms at low fields 
are of no consequence as far as the asymptotic critical behaviour is concerned (this point 
will be further substantiated later). Validity of the scaling relations between different critical 
exponents (exponent equalities) demands that the magnetization data taken in the critical 
region should satisfy the scaling equation of state (SE) 

m = f & )  (13) 

where plus and minus signs refer to temperatures above and below Tc and m = M/le lp  and 
h H/[cl@tv are the scaled magnetization and scaled fields, respectively. Equation (13) 
implies that m as a function of h falls on two different universal curves: j-(h) for c < 0 
and f+(h)  for E > 0. Instead of following the customary approach of plotting In m against 
Inh to ascertain if (13) is obeyed, the magnetization data are tested against an alternative 
form of SES, i.e. 

m2 =Fa& + b*(h/m) ( 14) 
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Figure 16. Temperature dependence of the effective critical exponent for initial susceptibility, 
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fib to the data based on equations (2) and (3), respectively. 

for two main reasons. First, even the slightest deviations of the data from the universaI 
curves f-(h) and f+(h),  which do not show up clearly in a Inm versus Inh plot because 
of the insensitive nature of the double-logarithmic scale, can be discerned with ease when 
the same data are plotted in the form of m2 versus ( h l m )  plot. Second, the use of the 
SES form given by (14) permits an independent determination of the critical amplitudes 
mo = ayJ2 and holm0 = a+/b+ from the intercepts of the universal curves with m2 and 
h j m  axes, respectively, in a m2 versus h lm plot and thereby provides a cross-check for 
the corresponding values obtained earlier by the KP andor CTS analysis. A representative 
m2 versus h lm plot, which demonstrates the validity of (14) is shown in figure 19. It 
should be emphasized at this stage that the sensiliviry of even such a plot does not s u f f e  
to distinguish clearly between the values of eflectiective and true asymptotic critical exponents 
in the present case for the following reason. For temperatures in close proximity to T,, 
where a distinction between exponents slightly differing in magnitude should, in principle, 
be possible, the values of m2 for a single isotherm span three or more decades, and in order 
to assess the quality of the data collapse onto the universal curves, the mz versus h l m  plot 
has to accommodate a number of such isotherms and hence data values differing by several 
orders of magnitude at the expense of the sensitivity. However, the values of asymptotic 
critical amplitudes mo and (ho/mo) computed from the intercepts of the universal curves 
so obtained exactly coincide with those listed in tables 2 and 3. Another important point 
to note is that, in sharp contrast with the low-field behaviour of the modified Arrott plot 
isotherms (figure 1 l), no deviations of the data points from the universal curves at low fields 
are discernible. This finding corroborates our earlier inference that such low-field deviations 
have no bearing on the critical behaviour. We now consider the physical implications of the 
considerably lower value of the ratio p0hO/kBTc for the glassy alloys in question compared 
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with that for the isotropic 3D NN Heisenberg ferromagnets (the aforementioned observation 
(vii)). Since ho could presumably be identified with an effective exchange interaction field, 
the product of ho and an average effective elementary moment (pen) involved in the FM-PM 
phase transition, i.e. the effective exchange energy pLeEhO, should equal the thermal energy 
ksT, at T = T,. Obviously, this is not true for the investigated amorphous alloys (table 5) 
unless f i e f  has a much higher value than f i ~  (average magnetic moment per alloy atom at 
0 K). Considering the fact that the asymptotic and crs  critical exponents as well as all other 
amplitude ratios possess 3D NN Heisenberg values, the ratio hho/kBT, is also expected 
to equal the 3D Heisenberg estimate of 1.58. This is possible only when p e ~  takes on the 
values given in fable 5. Moreover, if the concentration of such effective moments is c ,  then 
c = po/p,~ .  The values of c so calculated are included in table 5. It is evident from these 
numerical estimates that only a small fraction of moments (i.e. the Fe spins in the present 
case because Ni atoms in a-Fe,Nim,Bl& alloys are known [Z] to carry negligibly small 
moment) actually participates in the FM-PM phase transition and this fraction reduces further 
as the critical concentration (x: N 2.5 at.% Fe for the alloy series in question [15,25,30]) 
is approached along the FM-PM transition line in the magnetic phase diagram [15] from 
above. An important consequence of this is that the leading singularity at T = T, can be 
detected only in dpw(T)/dT but not in CM(T) (section 3.1). 

The result (observations (v) and (vii) above) that the asymptotic and correction-to-scaling 
critical exponents as well as the amplitude ratios retain their ‘pure’ values 135-38.40,44] 
regardless of the alloy composition in the reduced temperature range where, according to the 
‘unconventional’ RG theory [9-12], a crossover to the new composition-dependent exponents 
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Figure IS. The In M Y ~ ~ S U S  In H isotherm at a few temperatures around the Curie temperature 
T. far a-FelsNiMBlgSil. The full srnight line through the data represents the best least-squares 
fit to the critical isotherm (T, = 341.81 K) based on equation (12) of the text. This plot is 
representotive of the remaining compositions in the investigated alloy series. 

should have already taken place testifies to the validity of the theoretical predictions, based 
on the ‘conventional’ RG theories, that the critical behaviour of an ordered n = d = 3 spin 
system with cyp e 0 remains unaltered in the presence of quenched disorder (and hence 
to the correctness of the Harris criterion). However, such an agreement between theory 
and experiment can be put in proper context only when due consideration is given to the 
following remarks. First, the reliability of the theoretical estimates for some of the quantities 
quoted in tables 4-6 and obtained h o u g h  an extrapolation [I31 of RG &-expansion results 
to & = 4 - d = 1 is often hard to assess 1303. Thus the role of IDL interactions, if present, 
can be evaluated better by comparing the experimental values of certain quantities like the 
exponent 01 and the ratio A+/A-  with those determined experimentally for pure n = d = 3 
spin systems with or without IDL interactions rather than with the theoretical values whose 
reliability is in doubt. Considering that the antiferromagnet RbMnF3 and ferromagnet 
EuS are ideal examples of pure ISR exchange and ISR plus IDL exchange n = d = 3 
spin systems, respectively, the presently determined values of 01 and A + / A -  should be 
compared with the reported 145,461 values 01 = -0.10 and A f / A -  = 1.28 & 0.02 for 
RbMnF3 and 01 = -0.124 & 0.016 and A + / A -  = 1.54 & 0.09 for EuS. By demonstrating 
that the values of 01 determined in this work are the same (within the error limits) as those 
reported for RbMnF3 and EuS but the A t / A -  ratio closely conforms only with the value 
quoted for EuS, this comparison strongly suggests that the IDL interactions are present 
and affect the asymptotic critical behaviour in the quenched random bond- and site-diluted 



7430 S N Kaul and M S Rao 

.. c 
I 

x 
II 

* 

21 

+ 

E 
I 

x - 
2. 

3 
t 

+ 
Q 

'e 

2. 

U 

d" 

.-..-- nnn 
* * U  

. . .  - - c  

s 



Asymptotic critical behaviour of quenched REHM ferromfnets 7431 



7432 S N Kaul and M S Rao 

Table 6. Comparison between experimentally determined md theoretically predicted valuer for 
the specific h a  asymptotic critical expanent and amplitude ntios. and for the ratios involving 
specific heat and susceptibility 'correction-to-scaling' critical nmplirudes. 3 0  Hcisenberg results 
fmm 1131 and [41]-[44]. 

Alloy 
composition. Methodl 
Fe/NilB/Si mlysis A + / A -  a:,/.,; .&/a; a$/.:, 

10/70/19/1 1.00(9) 1.54(3) 0.08(4) 1.04(50) 
ACS 7.7(20) 4.5(10) 
BM.M-I.CTS 6.330) 4.5(20) 
8M.AA.tt.CTS 7.4(30) 4.5(20) 

13/67/19/1 dpldT 0.98(9) 1.51(3) 0.10(5) l.OO(50) 
ACS 7.1(25) 4.9(10) 
B M , M W T S  8.3(50) 4.9(20) 
BM,AA.II.CTS 7.8(45) 4.5(20) 

l6/64/19/1 dpldT 0.99(9) 1.49(3) 0.1 l(4) 1.03(40) 
ACS 5.6(15) 4310)  
BM.AA.I,CTS 5.6(25) 4.5(10) 
BM.AA.II.CIS 5.6(20) 4.4(10) 

U)/60/2WO dp/dT 0.99(4) 1.48(3) 0.13(2) 1.02(3) 
BM.A&t,CTS 6.7(20) 4.9(10) 
BM.M-II.CTS 7.0(20) 4.5(10) 

3 0  

Heisenberg I .oo 1.51(2) 1.00 4.6(3 

Abbreviarions: AA, asymptotic analysis; ACS, AC susceptibility; BM, buk magnetization, as, 'mrrection-to-scaling' 
analysis; dp/dT. temperature deivative ofresistivity. 

3D Heisenberg spin systems under consideration. Second, the fact that the percolation 
concentration [15,25,30] pc N 2.5/80 0.031 for a-(FepNi~o-,,)Bl~Sil alloy series lies 
well below the critical concentrations for bond- and site-percolation for nearest-neighbour 
(NN) exchange interactions on the FCC lattice [47] (which forms an adequate description 
[16,26] of the NN atomic configuration in the glassy alloys in question), i.e. p: = 0.1 19 and 
p :  = 0.195, respectively, indicates that the exchange interactions in these non-crystalline 
materials are not confined to the nearest neighbours only but their range extends far beyond 
[47] fhird NN distance (r3""); the range of exchange interactions is, however, too short 
in comparison with the spin-spin correlation length (at T N Tc), which is known I481 to 
diverge at Tc even for compositions x N x. in a-(Fe,Ni)-M alloy systems. By contrast, 
the 'conventional' RG theories are based on quenched random site- andor bond-diluted 
nearesr-neighbour Heisenberg model. Thud, since the alloys with x e xc exhibit spin- 
glasslike [E] behaviour, long-range RKKY interactions are expected to be present even for 
samples with composition x 2 x, besides the dominant direct Heisenberg isotropic exchange 
interactions (ILR), which extend well beyond r3"", and IDL interactions. Based on the present 
results, one is tempted to conclude that the critical behaviour of n = d = 3 spin systems 
with ILR and IDL interactions is preserved in the presence of RKKY interactions. Though 
this deduction is consistent with the prediction of a recent theory [49], which treats RKKY 
interactions within the framework of the spherical model for a ferromagnet with simple 
cubic lattice, rigorous theoretical calculations, which deal with a 3D Heisenberg spin system 
in which spins are interacting with one another via long-range isotropic exchange (range far 
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Figure 19. The mz venm h / m  scaling plot far a-FelsNiMBmSil. Similar scaling plots are 
obtdned for other compositions. 

exceeding r)nn), IDL and RKKY interactions, are called for, on the theoretical front, whereas 
the experimental results of the type presented in this paper on compositions very close to 
x, are needed, on the experimental side, to pinpoint the role of RKKY interactions since 
they are comparable in strength to the direct isotropic Heisenberg interactions for x 2: x,. 
Experimental investigations of the asymptotic critical behaviour in alloys with composition 
just above xc  are planned in future. 

5. Conclusions 

The results of the present investigation permit us to draw the following conclusions: 

In conformity with the Harris criterion and the predictions of the 'conventional' 
RG theories, asymptotic critical behaviour of quenched random-exchange Heisenberg 
ferromagnets is the same as that of the pure (ordered) n = d = 3 spin system with up < 0. 
This conclusion is based on the observation that the asymptotic and 'correction-to-scaling' 
critical exponents and the corresponding amplitude ratios remain unaltered from their pure 
values as the critical concentration is approached along the FM-PM phase transition line of 
the magnetic phase diagram. 

The effect of the IDL interactions of the type [ ( g s ~ ~ ) * / r d ] [ d ( r , r v / r Z )  - S,,]S[Sr, 
where g, is the splitting factor and d is the space dimensionality, on the asymptotic critical 
behaviour is mainly felt through the enhanced value of the At/A-  ratio as these interactions 
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leave other universal amplitude ratios and critical exponents practically unaltered from their 
values in the ISR case. 

Only a small fraction of spins (moments) actually participates in the FM-PM transition for 
compositions not too far above the critical concentration and this fraction reduces further at a 
very rapid rate as x -+ x,. This result is of paramount importance as far as the understanding 
of re-entrant behaviour at low temperatures in ferromagnets with composition just above x, 
is concerned. 

The amplitude ratios a: /a ;  and a$/.:, , characteristic of ferromagnets with quenched 
random disorder, are universal in the same sense as the ratios ah/.,; and aA/a$ are 
for ordered (crystalline) ferromagnets. No theoretical estimates are presently available for 
the former set of ratios. It is hoped that the present results will motivate theorists to 
undertake calculation of these ratios and thereby significantly contribute to the understanding 
of asymptotic critical behaviour of quenched random-exchange Heisenberg ferromagnets. 

Since crossover to a random fixed point, characterized by a set of new critical exponents 
whose values substantially differ From the 3D Heisenberg ones, has not been observed even 
for temperatures as close to Tc as c N long-range anisotropic dipolar interactions and 
isotropic long-range exchange interactions of the form -(J,rd+")Sg .S,, where 0 < U < 2 
and U i (2 - q ) ,  which render ISR Heisenberg fixed point unstable, are both absent in the 
glassy alloys in question. 

That the universality hypothesis, which asserts that the range and type of interaction 
both are of no consequence as long as the spin-spin correlation length diverges at T,, is 
basically correct is vindicated by the result that the ISR Heisenberg-like critical behaviour is 
retained despite the presence of long-range direct exchange interactions (range far exceeding 
rlnn but too short compared to the spin-spin correlation length). 

S N Kaul and M S Rao 
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