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Abstract. Asymptotic and leading ‘correction-to-scaling’ critical exponents and critical
amplitudes for zero-field specific heat, spontahecus magnetization and initial susceptibility have
been accurately deternuned for quenched random-exchange Heisenberg ferromagnets through an
elaborate anafysis of highly precise electrical resistivity, bulk magnetization and AC susceptibility
data taker on amorphous FeNigp—.(B.Silo (x = 10, 13, 16 and 20) alloys in the critical
region. The values of critical exponents and universal critical amplitude ratios so obtained do
not depend on composition and conform very well with the corresponding estimates given by
the renormalization-group calculations for quenched random site- and bond-diluted Heisenberg
ferromagnets. The amplitude ratios agj /ag; and o) /a},, which are characteristic of ferromagnets
with gquenched random disorder and for which no theoretical estitates are presently available,
seem to possess universal character for they too are composition-independent. The experimental
results are consistent with the concept of scaling in that the exponent egualities ¢+ = o™,
B+y = B8 and e+ y = 2(1 — B} are obeyed to a high degree of accuracy and the magnetization
data satisfy the scaling equation of state characteristic of second-order phase transition. The
effect of the isotropic long-range dipolar interactions on the asymptotic critical behaviour is
mainly felt through the enhanced value of the A+ /A~ ratio. Only a small fraction of moments
actually participates in the ferromagnetic{FM}—-paramagnetic(PM) phase transition for the alloys
with Fe concentration x not very far from, but above, the critical concentration x, and this
fraction reduces further at a rapid rate as x, is appreached along the F—pM phase transition line
in the magnetic phase diagram.

I. Introduction

Study of critical phenomena in quenched random site-diluted (RSDH) and bond-diluted
{RBDH) Heisenberg ferromagnets has been actively pursued for more than a decade now,
and yet the nature of phase transitions in these systems has defied a clear understanding so
far. Conflicting theoretical predictions and inconclusive experimental results seem to be at
the root of this sitnation as elucidated below, Theoretical attempts to calculate the magnetic
susceptibility critical exponent y for RSDH and RBDH spin systems using the high-temperature
series expansion method have yielded widely different functional dependences of y on the
concentration x of the magnetic impurities; as x is lowered towards the percolation threshold
X, (critical concentration at which long-range ferromagnetic order first appears), ¥ increases
rapidly from its value (~ 1.4) in the pure or concentrated limit (i.e. x ~ 1) to a value as
high as 2.5 at a concentration well above x; for RSDH system [1], whereas it stays constant
at its pure valuve in the entire concentration range x. < x < 1 for REDH ferromagnets [2].
Similarly, the so-called ‘conventional’ renormalization-group (RG) calculations [3-7], based
on the random-exchange Heisenberg model {(REHM), which includes both quenched RSDH
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and REDH models, assert the following: (i) The addition of short-range frozen (quenched)
disorder to a pure (ordered) spin system, which undergoes a second-order phase transttion
at a temperature T (Curie point), does not affect the sharpness and other critical properties
of the transition if the specific heat critical exponent of the pure system, oy, is negarive (this
result is better known as the Harris criterion [8]). (it} The critical exponents, characterizing
the paramagnetic(PM)}—ferromagnetic(FM) phase transition in REHM, do not depend on x.
(iti) In the presence of a (quenched) disorder, which introduces long-range correlations in
the spin system, the FM~PM transition should get ‘smeared’ even if o, < 0. These assertions
contrast with the predictions of the so-called ‘unconventional’ RG treatment [9-11] of REHM:
(i) that a pure isotropic Heisenberg fixed point is stable only ir the weak-disorder limit (i.c.
for x — 1); (ii) a crossover from pure to new critical exponents, which depend on x,
occurs at a composition-dependent temperature e,o(x) (= (T = T/ T, at T = To(x), e.g.
€co = 10° for x — 1 whereas for x — x. (strong-disorder limit), &, > 102) even for a spin
system with @, < 0; and (jii) in the extreme-disorder limit (x = x;), the critical exponents
assume the Fisher-renormalized tricritical exponent values (which are the same as those
given by the three-dimensional (3D) spherical model, ie. ¢ = 1.0, 8 = 0.5, y = 2.0,
§ = 5.0, v = 1.0, n = 0.0) over a wide range of temperatures extending [9] from e =~ 10?
down to € =~ 10~% regardless of the dimension of the order parameter and of the range
and type of interaction between spins. Though the ‘unconventional’ RG theories, as a result
of the recent modifications [12], now support the validity of the Harris criterion even for
compositions very close to x. and for temperatures ¢ < 1075, they still predict composition-
dependent effective critical exponents in the temperature range 107* < ¢ < 107!, Note
that the ‘conventional’ and ‘unconventional’ RG theories are concepiually different. The
former set of theories follow two main approaches and both of them yield identical results.
In the first approach [3], RG is used to derive the recursion relations for the probability
distributions for the random potentials (which characterize quenched random spin systems)
and the critical properties are determined by the fixed points of these recursion relations. In
the second approach [5], a translationally invariant ‘effective’ Hamiltonian H is obtained
by averaging a spin correlation function of the difute continuous-spin system with respect
to the random variables characterizing the dilution and then RG is employed to investigate
the critical behaviour of . By contrast, the latter set of RG theories [9-12] use an effective
Hamiltonian that treats a quenched random system formally as an equilibrium system by
introducing forces of constraints. Alternatively, it is assumed that the forces of constraints
establish a ‘fictitious thermodynamic equilibrium’ and thereby transform the spin system
with quenched disorder into one with annealed disorder.

Critical behaviour near the FM—PM phase transition has been experimentally investigated
in the temperature range 107* < € € 107! in a large number of amorphous magnetic
materials [13, 14] that include 3d transition metal (TM)-metalloid (M), 3d TM—4d ™ and
rare earth—3d T™ alloys. However, a direct comparison of the experimental results with the
theoretical predictions, in most cases, is rendered meaningless due to either serious flaws
in the data analysis or failure in achieving the required sensitivity in a given measurement
or both [13]. A compilation [15] of the best experimental values (arrived at by using
the ‘single power-law’ apalysis) reported [13, 14, 16-24] to date for the critical exponents
@, 8, v and &, which describe the singular behaviour of specific heat C(T}, spontaneous
magnetization M;{T), initial susceptibility xo(T) and the magnetization versus magnetic
field (M versus H) isotherm at T;, respectively, in the case of amorphous a-(Ni; -, Fe,)-M
and (Fej—,T™,)-M (TM = Cr or Mn) alloys demonstrates the following [15}: (i) The critical
exponents for the alloys with x — 1 and y — 0 (i.e. in the weak-disorder limit) possess
vatues (o == —0.2, § ~ 0.4, ¥ =~ 1.31 and & =% 4.4) that are fairly close to, but systematically
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shifted away from, those (& ~ —0.11, 8 = 0.365, ¥ = 1.386 and § ~ 4.8) theoretically
predicted for a 3D isotropic Heisenberg ferromagnet; the experimentally determined values
(except for the exponent &) are shifted towards the mean-field values (@ = 0, g = 0.5,
vy = | and § = 3). (ii) The values of critical exponents increasingly deviate from those of
the pure system as increasing amount of disorder is introduced into the spin system either
by a progressive magnetic dilution (accomplished by replacing an increasing amount of Fe
by Ni, since Ni atom carries a negligibly small moment [25] in a-(Fe;—,Ni, )M alloys)
or by a partial substitution of Fe by Cr or Mn (resulting in a reduction in the number of
Fe-Fe ferromagnetically coupled pairs and a concomitant increase in the number of Fe—Cr
or Fe-Mn antiferromagnetically coupled pairs). (iii) In the limit x — x, the sign of such
deviations depends upon whether the 3d T™ replacing Fe in the above-mentioned alloy series
occupies a place in the periodic table to its immediate left (e.g. Cr, Mn) or right {e.g. Ni).
(iv) The exponents do not attain the Fisher-renormalized tricritical values at x =~ x.. While
the deviations from the predictions of the 3D nearest-neighbour (NN) Heisenberg model] are
generally attributed [13] to long-range isotropic dipolar or Ruderman-Kitte]-Kasuya-Yosida
(RKKY) interactions and/or isotropic Heisenberg interactions extending well beyond the NN
distance [16, 26], the dependence of critical exponents on composition is taken to imply
[21,27,28] that the ‘unconventional’ RG theories describe the critical behaviour of REHM
systems correctly. A careful examination of the above findings (i)-(iv), however, reveals
that the observed trends are inconsistent with the predictions of both ‘conventional’ and
‘unconventional’ RG theories.

Recently, an elaborate analysis [29, 30], which takes into account the leading ‘correction-
to-scaling’ (CTS) terms, of highly accurate *zero-field’ susceptibility, xo(T')}, and electrical
resistivity, p(T), data taken on a-FeyNigy.B19Si; alloys in the critical region has yielded
true asymptotic values of the critical exponents y and « that do not depend on composition
and are indistinguishable (within the error limits) from the corresponding values given
by the RG theory [31] for pure isotropic spin systems with space (d) as well as spin
{n) dimensionality of 3 (i.e. systems with d = » = 3). The resulis of this analysis
have also demonstrated that the systematic deviations in the case of the exponents y
and « observed earlier can be traced back to the customary practice of neglecting the
CTS terms completely and using the ‘single power-law’ method to analyse the data taken
over a range of temperatures that embraces the critical region. The spurious nature of
the deviations suggests that the previously determined values of the exponents 8 and &
are not true asymptotic values, and that a reanalysis, which gives due consideration to the
confluent singularity terms, of the bulk magnetization data aiready available [13, 14,17, 22]
on some compositions in the glassy alloy series a-Fe,Nigg—,B155i; 1s called for. However,
inclusion of the CTS terms in the data analysis demands a far greater precision in the
measurements than achieved hitherto. This realization prompted us to undertake high-
precision magnetization measurements on the amorphous alloys with x = 10, 13, and 16 in
the above-mentioned series and on a-FeygNigoBay. Moreover, we have taken rew sets of AC
{‘zero-field’) susceptibility, xo{7"), data on samples (with composition x = 10, 13 and 16)
the same as those used in our recent resistivity, p(7"), measurements [30] and then performed
magnetization, M(H, T), measurements on them with a view to test the validity of the claim
recently made by Giintzel and Westerholt [28] that the low-field AC susceptibility is not well
suited to study critical behaviour in metallic glasses and to investigate in depth the possible
bearing of deviations from the straight-line Arrott plot isotherms observed {13, 14,22, 24, 28]
at low fields, usually encountered in amorphous ferromagnets, on the critical behaviour, The
fact that all three physical quantities, i.e. p(T). xo(T) and M (H, T), have been measured for
the same alloy ribbons not only permits a detailed comparison between the results of xo(T)
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and M(H,T) measurements in the critical region but also gets rid of the complications
arising from the variations in composition, if present, in samples from the same (different)
altoy batch (batches).

2. Experimental details

Amorphous (a-) Fe,Nigo—B1oSi; (x = 10, 13, 16) and FexNigeBag alloys were prepared in
the form of long ribbons of cross section 0.04 x 2 mm? by the single-roller melt-quenching
technique under high-purity argon (inert) atmosphere. That the ribbons so fabricated are in
the amorphous state was verified by the x-ray diffraction method using Mo K, radiation
and later confirmed by the high-resolution electron microscopic technique. A detailed
compositional analysis [29] was then carried out on ribbons that did not reveal any crystalline
regions upon electron microscopic examination. From such an analysis and the observed
composition dependence [13-15, 17,20, 22,25, 29,30] of T, the concentration fluctuations
in the samples in question are expected to give rise to fluctuations in T, of the order
8T, ~ 0.1 K. Our recent resistivity resuits [30] on a-Fe,Nigy_.B1581) alloys do indeed
show that the ‘rounding’ of the transition at T, occurs for |T — T;[ < 0.1 K. Therefore,
the data taken in the reduced temperature range £ 87T;/T, have been excluded from the
analysis.

Previous high-resolution (relative accuracy better than 1 ppm) electrical resistivity
measurements [30] carried out on a-FeNige_,B1s8i; {(x = 10, 13, 16} alloy ribbons of
length 60 mm using the four-probe DC method were extended to yet another composition a-
FeooNigoBag. The p(T'} data on this sample were taken at temperatures = 30 mK apart in the
region =0.1 € ¢ = (T —T)/ T £ 0.1 keeping sample temperature constant at a given setting
to within £10 mK by means of a proportional, integral and derivative (PID) temperature
controller. Other relevant details regarding these measurements are given in our earlier
paper [30]. The 60 mm long resistivity sample (ribbon piece} of a given alloy composition
was cut into three strips, each =~ 20 mm in length, which were then stacked one above
the other to form the sample for AC susceptibility, x.(7), measurements. High-precision
(relative accuracy better than 10 ppm) xa(T) data were recorded on the samples with
composition x = 10, 13 and 16 (similar measuremenis on the FeagNiseBao sample could not
be carried out because its Curie temperature lies just above the maximum temperature that
the experimental set-up can presently handle) at 25 mK intervals in the temperature range
—0.05 £ € £0.05 in a RMS AC driving field of H,, = 100 mOe and frequency 87 Hz, using
the mutual inductance method [31]. The sample temperature, monitored by a precalibrated
platinum resistance sensor, as in the p(7") case, was kept constant to within £10 mK during
the measurement period at every fixed temperature setting by the PID temperature controller,
Magnetization (M) versus magnetic field (H,,) isotherms (temperature stability better than
440 mK) were measured at 0.]5 K intervals in the critical region —0.05 € ¢ < 0.05
and at temperatures 5 K apart for € > 0.05 by means of the PAR 4500 vibrating sample
magnetometer in fields up to 10 kOe on a-Fe,Nig_,(B,Si)y alloys with x = 10, 13, 16
and 20. Each isotherm was obtained by measuring M at 25 predetermined but fixed (io
within 1 Oe) values of Hey in the range 0.1 kOe & He € 10 kOe. The sample employed
for M{He, T) measurements was in the form of a pile of rwelve ~ 5 mm long pieces cut
from three =~ 20 mm long strips (one 60 mm long strip) of composition x = 10 or 13
or 16 in the amorphous alloy series Fe,Nigg—,B19Si (FeagNigoBao) used earlier for x..(T)
{(£(T)) measurements. The sample temperature was measured by precalibrated platinum
resistance sensor and copper—constantan thermocoupie for temperatures below and above
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300 K, respectively, My and Hey were directed along the length of the strips within the
ribbon plane in x,. (T} and M (H,,, T) measurements to minimize the demagnetizing effects.
The demagnetizing factor for the samples used in both these measurements was determined
by the low-field (£ 20 Oe} magnetization data and the external field, H.., was corrected
for the demagnetizing field, Hgem, to obtain the field, H = Hey ~ Hiem, experienced by the
spins within the sample.

3. Results and data analysis

3.1. Zero-field specific heat and temperature derivative of resistivity

For concentrations close to, but higher than, the critical concentration x., only a small
fraction of spins actually participates in the FM—PM phase transition [13, 14, 17] and this
fraction decreases rapidly as x — xJ, implying thereby that a small amount of magnetic
entropy is released at T, for such systems. As a consequence, it is impossible to detect
the singularity in the magnetic part of specific heat, Ca(T), at T; for alloys with x = xJ
even under the most favourable conditions. An effective way to tackle this problem is
to exploit the well known relation [32], i.e. dpyu{T)/dT o« Cyu(T), between Cy and the
temperature derivative of the magnetic part of electrical resistivity for temperatures in the
close proximity to T; and study the critical behaviour of Cy(T) indirectly by measuring
p(T} in the critical region. An accuracy greater by three or more orders of magnitude
routinely achieved in resistivity measurements than in specific heat measurements permits
detection of the anomaly at T, with ease. That a direct correlation between dpy(T)/dT and
Cu(T} in the critical region exists in spin systems with quenched disorder has previously
been experimentally demonstrated [33, 34] for several amorphous TM-M alloys including
one of the alloys of present interest [34], 1.e. FeqpNigoBag.

The temperature derivative of resistivity (evaluated by the three-point differentiation
method) normalized to the value of resistivity at T (dp(T)/dT)/p(T:} = o, as a function
of temperature in the reduced temperature range —0.05 < ¢ £ 0.05 for a-FeyNigeBag is
shown in figure 1. The previously published [30] (T} data on the amorphous alloys
with x = 10, 13 and 16 in the series Fe,Nig_,B15S8i; are also included in this figure for
comparison. The data for the former sample have been analysed in the same manner as
those for the latter alloys. We only briefly outline the method of analysis here since the
details have already been given elsewhere [30}. Theoretical fit to the o (T) data is attempted
based on the expression

o = (A* fab)(Ee) ™ [ + afoF (£)A +aZat ()] — (A% /o) + BE (1)

(where the plus and minus signs denote temperatures above and below T, and A% (ac*l,
afz) and e® (A, Ay) are the asymptotic (leading *correction-to-scaling’) critical amplitudes
and critical exponents, respectively) given by the so-called ‘conventional’ RG theories [3~
7,15,30,35, 36]. These theories consider the quenched disorder in 4 = n = 3 NN isotropic
spin system as an irrelevant scaling field and hence predict that an additional leading
confluent correction term, characterized by the exponent [6,7,29, 35,36] A; = |erp|, should
appear in (1) besides the one present in pure systems and involving the exponent Az, By
contrast, the so-called modified ‘unconventional’ RG theories [12] assert that the effective
critical exponents afff, corresponding to the case when aﬁ = afz = 0in (1), are composition-
dependent uniess T; is approached closer than ¢ =~ 1075, In view of the above theoretical
predictions, to begin with, we fit the o (T) data for T < T, and T > T, separately to
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a single power law by sctting aﬁ = afz = 0 in (1) and use a range-of-fit analysis in
which the change, if any, in the values of the fitting parameters A%, B%, o* and T*
is monitored as the temperature range (€min < € & €nax} Of the fit is narrowed down
by raising (Jowering) €min (Emn) tOWards €myy (€pp) while keeping ema (6min) fixed at a
given value. The resuits of this single power-law analysis (henceforth referred to as Aa)
for a-FeyoNigyBao coupled with those yielded by the same analysis for other compositions
(x = 10, 13, 16) previously [30] present the following main features. (i) 7,” ~ T.* and
o~ =~ ¢t within the error limits. (ii) The exponent « stays constant in a narrow temperature
interval Iefﬁnl £ le] € le,ﬁu] only and within that interval its value o = —0.15 % 0.02 is
independent (within the error limits) of the Fe concentration. (iii) The ratios A* /A~ =~ 1.55
and (BT — (A" jat)Y]/[B™ — (A~ Jae™)] =~ 1.6 regardiess of the Fe concentration, Failure of
data to satisfy the equality 8¥— (At /a¥)} = B~ —(A~ /™) dictated by the requirement that,
forew <0, dp*/dT = dp~/dT at T = T, necessitates inclusion of the confluent singularity
terms in the analysis. As a first step in this direction, o(T) data for T < Toand T > T,
have been least-squares fitted to the expression that includes the first leading correction term
only, i.e. equation (1) with aci2 =0, and agreement with the experimental data is optimized
by varying the parameters A*, B¥, o¥, T*, a% and A;. Though these fits are superior
to the ‘single power-law’ fits and the values of T.* and o™ are reasonably accurate {e.g.
o~ ~at = —0.115 £ 0.008), values of A%, B%, aj and A, fluctuate a lot when the range
of fit is altered. We therefore fit the o (T") data to (1) for T < T, and T > T, separately,
using the range-of-fit analysis and a non-linear ieast-squares-fit computer program that treats
A%, BE o, af}, aZ and T* as free fitting parameters, but keeps A; and A; fixed at a
given value in the ranges 0.01 < A; £ 0.20 and 0.33 € A; £ 0.75. The same procedure is
repeated for another fixed set of values for A, and As, which differ from the previous ones
by 40.01. Best fits, as inferred from the least values of the sum of the deviation squares,
x2, are obtained for A; = 0.11 £ 0.05 and A, == 0.55 & 0.08, with the values for the
remaining parameters that have an undesirably large uncertainty (e.g. typical values for the
asymptotic exponent are &t = --0.115%0.015 and &~ = —0.120£0.015) but are otherwise
close to those determined by the following procedure and listed in table 1. Realizing that
the large uncertainty mainly stems from the correlation between different parameters in
a multiparameter fit, and that the above values of A; and A, conform very well with the
theoretically predicted [36-38] estimates, substantial reduction in the uncertainty is achieved
by imposing the condition T~ = T, and by keeping A; and A, constant at A; = 0.11
and Aq = 0.55. With these constraints, the range-of-fit analysis and the least-squares fitting
method (the ‘so-called’ CTS analysis) yield the most optimal values for the parameters T.%,
a*, A%, B*, g and a¥ displayed in table 1. The theoretical fits based on these parameler
values and denoted in figure I by the full curves can be seen to describe the observed
variation of &.(T) very well for |€| € [€]; the data points start deviating from these fits
for |¢| > lécol. This observation is made all the more obvious by the deviation plot shown
in figure 2 for a-FeypNigeBao. From figure 2, which depicts the percentage deviation of the
data from the best AA or CTS fit as a function of reduced temperature, it is evident that
the ¢Ts fits closely reproduce the observed variation of e with T over a wide temperature
range whereas the AA fits present systematic deviations from the actual data in the entire
temperature range covered in the fits. Thus, the data presented in figure 2 highlight the
importance of the CTS terms and asseri that the CTS analysis provides an accurate means
of determining the asymptotic and comrection-to-scaling critical exponents and amplitudes
as well as the crossover temperature |ec,|, which, in turn, determines the extent of the
asymptotic critical region in the materials under consideration. The same inference can be
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FexNiao—x(B,Si)zo

]
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Figure 1. Nermalized temperature derivative of resistivity as a function of reduced temperature
for amorphous Fe,Nigp—x(B,S1)2¢ alloys in the range —0.05 € ¢ = (T = T}/ e < 0.05, The
full curves through the data points are theoretical fits based on equation (1), For the sake of
clarity, only one-eighth of the total number of data points are shown in this figure and the data
points corresponding to temperatures in the immediate vicinity of T; are deleted, Note that the
zero on the ordinate scale should read as 1, 2 and 3, respectively, for the ailoys with x = 13,
16 and 20.

drawn from the deviation plots for the alloys with x = 10, 13 and 16 shown in figure 8 of
[301.

3.2. ‘Zero-field’ susceptibility

The observed variation of AC susceptibility, corrected for demagnetization, Le. yol€) =
Xmeas(E}/[1 — N Xmens{€}] where N is the demagnetizing factor, with temperature in the
critical region is depicted in figure 3. The ‘conventional’ RG theories {3-7, 15,29, 35, 36}
yield a temperature dependence of ‘zero-field’ (initial} susceptibility, xo(¢), for temperatures
(e z 0) not too close to T of the form

xole) = Te7¥(1 —[—a;'(‘le‘" + afze"‘”‘?) €>0 )

which includes the leading ‘correction-to-scaling’ (CTs) confluent singularity terms.
Experimentally, however, it is customary to fit xo(¢) data taken over a fairly wide
temperature range near T, to a single power law

Xo(€) = Degre ™" e>0 (3)

where Tefr and yerr are the gffective critical amplitude and critical exponent, respectively.
According to the ‘unconventional’ RG theories [9~12], equation (3) describes the temperature
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0.00
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100C o (exp)—a(cal)1/ a(exp)
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Figore 2. Percentage deviation of the o (T) data from the best A4 (@), based on equation (1)
with % and a% set equal to zero and the choiee of parameters A* = 0.12 x 107% K~!
(A~ =0.065 x 103 K~!), B* = 0,103 x 107 K~! (B~ = 0.42x 107 K~ ") and o™ = —0.14
(o= = —0.18), and cTs (O), based on equation (1) with the choice of the parametets given in
table 1, least-squares fits. The arrows indicate the crossover temperature €g,.

variation of xo(¢) in the crossover region correctly and ye is composition-dependent.
Considering the relation that exists between yeg and p for temperatures very close [29]
to T, ie.

verr(€) = dlIn x5 ()]/d(Ine) = y — af, Are® —afyAze™ (4)

vege could significantly differ from the theoretically (‘conventional’ RG theories) predicted
asymptotic (universal} critical exponent ¥ and it is only in the limit € — 07 that yeu(e)
coincides with ¥, ie. y = lime — 0¥ [pe{€)]. The corresponding relation between I
and T is [29] )

Teee) = T(1 + a;-lfm +a;-zEAz)e—(a:,meAi+a;'zAze“‘1) =TN (5)

where N represents the expression by which I' is multiplied to yield the product Cefr in (5).
1t is evident from equations (2)-(5) that a prior knowledge of Teg, verr and T is required for
extracting values of T, y, a}}, al,, A; and A, from the xo(¢) data. High accuracy in the
determination of T and y.g (and hence of Feg) is achieved by a method [39] (henceforth
referred to as the KF analysis) that makes use of the following alternative form of equation
(3), ie.

X(T) = xg {Ddxg (AT = (T — T0) /verr = (Te/ Verr)e- (6)
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PFigure 3. Varation of injtial (4C) susceptibility with temperature ia the range —0.05 £ ¢ £ 0.05.
Note the change of scale for the data of the alloys with x = 10, 13 and 16. For the sake of
clarity, onty one-quarter of the total number of data points are shown in this figure.

According to this method, the X (T) versus T plot in the asymptotic critical region (ACR),
where xo(T) can be approximated by a power law (equation (3)), is a straight line whose
slope is 1/vesr and intercept on the T axis yields T, (note that if the value of T, determined
by the KF analysis, is used to construct the X(T) versus ¢ plot in the ACR, the resulting
plot should, again, be a straight line but now this straight line passes through the origin and
possesses a slope T/ ye, of equation (6)). The X(T) versus € plots shown in figure 4 for
the amorphous alloys with x = 10, 13 and 16 testify to the validity of equation (6) (and
hence of equation (3)) in a narrow temperature range above T.. Data points, however, start
deviating from the least-squares-fitted straight lines at a temperature €., (shown in figure 4
by downward arrows) and the deviations grow as € is increased above €. In view of the
definition '

verr(€) = [xo(e) dxg (¢)/dele = [T,/ X (T)le (7)

such deviations imply that y.g(¢) increases for ¢ > €, This behaviour of y.g(¢) has
come to be known as a characreristic {13, 14, 21,22, 24, 27] property of quenched-disordered
ferromagnets. Accurate values for the parameters I, v, a;'i, a;}, Aq and Aj listed in table 2
are then determined by fitting equations (4) and (5) to the yeg(e) and Fea(e) data, depicted
in figures 5 and 6 and computed from equations (7) and (3) using the value of T; deduced
by the KF analysis of the yg(¢) data, by means of the non-linear least-squares fitting method.
The best theoretical fits to the data so obtained are shown as full curves in figures 5 and 6.
In order to verify whether or not the above analysis yields correct values for the parameters
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Figure 4. Temperature dependence of the quantity X{(7T) = x(,“(dx(,‘l ,IdT)‘l in the critical
region. Note that only one-guarier of the total number of data points are shown n this figure
to maintain clarity and €., denotes the temperature beyond which the data deviate from the
Teast-square fits (full straight lines through the data points) based on equation (6).

of interest, we have constructed the plots of [y — ve(€)l/A€2! against Aze®2/A e and
Te{e) against IV, based on the modified {29] version of equation (4}, i.e.

[¥ — verr(€)]/ Ar1e® = ﬁ;} +0I2(A2€A2/ﬁ1€ﬂ”) (8)

and equation (3), respectively, with the choice of the parameters given in table 2. Such
plots displayed in figures 7 and 8 demonstrate that, consistent with equations (8) and (3),
these plots are straight lines with slopes a;c*?_ and I', and intercepts on the ordinates a;(*‘l and
0, respectively. In order to bring out clearly the importance of the CTS terms, the deviation
plots for the alloys with x = 10, 13 and 16 are shown in fizgure 9. The yp(¢) data, like
the dp(T)/dT data, can be seen to exhibit systematic deviations from the KF fits (which
totally ignore the CTS terms) throughout the temperature range of the fits, whereas they are
evenly scattered around the calculated values in the case of the CTS fits. Moreover, such
plots serve as a cross-check for the values of T, ¥, a;'[, a;cLz, Ay and A; determined by the
above method.

3.3. Bulk magnetization

*Zero-field’ quantities like spontanecus magnetization (M;) and initial susceptibility (xo)
have been estimated from the magnetization (M) data taken in finite external magnetic fields
(H.,) at different temperatures by means of two different extrapolation methods, AA-T and
AAL In the AA-1 method, the ‘raw’ magnetization data are converted into a set of M? versus
(H /M) isotherms, which constitute the well known Arrott—Kouvel (AX) plot (figure 10} and
upon parabolic extrapolation [13,14,16,17] to (H/M) = 0 and M? = 0 yield intercepts
on M2 and H/M axes equal to M*(T) for T < T; and x; (T for T > T,. By contrast, in
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Figure 5. Variation of the effective critical exponent for susceptibility, yes(€), with reduced
temperature in the range 0 € £ 0.06. Full curves through the data points are the least-squares
theoretical fits based on equation (4) while the error limits give the measure of uncertainty 1n
Vesr(¢) due to uncertainty in Te.

the AA-11 method, the M(H = Hey — Hyem, T') data are used to construct the modified Arrott
plot (i.e. M'/# versus (H/M)"¥ plot shown in figure 11), in which the critical exponents
B and y are varied until M'/# versus (H/M)!/¥ isotherms in a narrow temperature range
around T, are straight and parallel o one another over as wide a range of {(H/M) values as
possible, and the quantities M (T) and ¥, Y(T) are then computed from the intercepts on
the M8 and (H/M)'/¥ axes obtained by a linear extrapolation [13, 14,19, 22,24] of the
high-field linear portions of the isotherms to (H/M)!/Y = 0 and M'/# = 0. Note that the
AA-Il method gives more importance to the high-field data than to the low-field data (i.e.
significant deviations from the straight-line behaviour do occur at low fields for isotherms
taken at temperatures well below and above T, see figure 11) whereas the AA-I method
gives equal weight to the high- and low-field data. Another important observation [13],
which has a direct bearing on the ouicome of these extrapolation methods, is that the AK
isotherms exhibit increased concave-downward curvature at low fields for T < T, as the
composition x — x. so that large gradients near the M? axis can introduce large systematic
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Figure 6. Variation of the gffective critical amplitude for the susceptibility, Typr(€), with reduced
temperature in the range 0 € ¢ € 0.06. Full curves through the data points are the least-squares
theoretical fits based on equation (5) while the error limits give the measure of uncerfainty in
Terr{e) due to uncertainty in Te.

errors in the determination of My, and hence the values of the exponent § and other fitting
parameters derived from such data are less reliable than those extracted from the M (T}
data obtained by the AA.II method. Figures 12 and 13 compare the corresponding sets of
M(T) and x5 '(T) data obtained by these extrapolation methods for the investigated alloys
in the critical region. In these figures, My(T) and x, Y(T) are plotted against the reduced
temperature € = (T — 1.}/ T;; the values of T used in these plots are displayed in tables 2
and 3 and have been determined by the following method.

Theoretical fits to the M,(¢) and x5 1(e) data have been attempted based on the
expressions [3-13, 29, 35, 36]

My(€) = mo(—)P (1 + oy () + g (—€)%) € <0 )
and

Mi(e) = mgf(—e)Pn €<0 (10
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Figure 7. Plots of [y — yerle)]/A1€20 against (Az/48))et82~ M) (= (Age®2 /A €81)) for
amorphous Fe,Nigy- B 081, alloys, which make use of the choice of parameters ¥, A| and
Ay that gives the best least-squares (L5) fits to the y.p{e) data based on eguation (4), The
LS straight-line fits through the data points yield the values for a;'l {intercept on the ordinate)
and a:z (slope), which exactly coincide with those obtained through L fits to the ygrie) data
directly (i.e. those listed in table 2) based on equation (4) and hence testify to the validity of
equation (8).

and the equations (2) and (3) with T' = (mo/ ko) and e = (o) ho)err, respectively. At
first, in analogy with equation (6), equation (10) is cast in the alternative form

Y(T) = M(D)AMJ(T)/ATT™ = (T = To)/ Beir = (Te/ Beti)e (11)

and then reasonably accurate values of Sex and jer and T; are obtained from the slopes and
intercepts {on the T axis) of Y(T) versus T and X(T) versus T straight-line plots in the
ACR (€| < |€gl]). The values for these quantities so deduced are tabulated in tables 2 and 3
and used in equation (10) and (3) to determine mgﬁ and Iy whose values are also included
in these tables. The error limits for the effective critical amplitudes, critical exponents and
T: have been estimated from the scatter in their values yielded by a detailed ‘range-of-fit’
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amorphous Fe,Nigp..,B19Si; alloys, which make use of the choice of parameters Ay, Az, a;l

and ‘1+z that gives the best least-squares {Ls) fits to the y.r(e) data based on equation (4). The
L5 straight-line fits through the data points yield the values for intercept on the ordinate equal
to zero and slope equal to [ and thereby demonstrate the validity of equation {3).

analysis in the ACR. With a view to accommodate data on samples with widely different
T values in a single figure, the plots of X(T") against € and Y(T) against € are shown in
figure 14 instead of the usual X (T} versus T and Y (T) versus T plots, Attempts have also
been made to fit (10) and (3} to the M(T) and x5 Y(T) data taken for |¢| < |eco! directly,
with the result that the values for the parameters mgff, Cer = (mo/ hodesss Botr, Yerr and T
so determined match very well their corresponding values deduced by the above method
(the KF analysis). At this stage, it should be emphasized that the extrapolated M(T)
and x5 Y(T) data are bound to have more scatter than the x.(T) data which are directly
measured because part of the accuracy of the M(H, T) data is lost in the extrapolation
{to zero field) process. The scatter in the extrapolated data gives rise to an undesirably
large scatter in Beg(€) and yep(e) (compare figures 15 and 16 with figure 5), which, in
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Figur¢ 9. Percentage deviation of the AC susceptibility data, xo(¢), from the best xF (full
symbols) and Crs (open symbols) least-squares fits.

turn, precludes the use of the method of analysis, employed earlier to analyse x,.{7) data
(section 3.2), to extract reliable values for the asymptotic and leading CTS critical amplitudes
and critical exponents from such data. We have, therefore, fitted equations (9) and (2) to
the M(T) and x; (T data taken in the temperature range i€| < €| directly using the
non-linear least-squares fitting computer program, which varies the fitting parameters #1g
(T~7 = ho/mo), T, (T'), B (v} and ay, (a},) and ag, (a,) but keeps A and A constant
at their theoretically predicted values, i.e. A; = 0.11 and A, = (.55, to optimize agreement
with the experimental M;(e) (xg (¢)) data. The best theoretical fits (shown in figures 12,
13, 15 and 16 by the full curves) with the choice of the parameters given in tables 2 and 3
obtained in this way (henceforth referred to as the CTs analysis) are superior in quatity to
those (the KF fits) based on equations (10) and (3}, as inferred from a substantially reduced
value of x? for the former type of fits (tables 2 and 3). Such an improvement in the
quality of fits brought about by the inclusion of CTS terms in the theoretical expressions for
M(T) and xq 1(T), not so apparent from the comparison between theory and experiment
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Figare 10. Arrott-Belov—Kouvel (M? versus H/M) plot of a-FejsNigiB10Si| at a few
representative temperatures around the Curie point.

(depicted in figures 15 and 16) so far as the effective critical exponents Bug(¢) and yur(e)
are concerned for reasons already mentioned, is obvious from the deviation plots shown in
figure 17 for the data obtained by the AA-Il method. Such plots are also representative of the
nature of deviations observed for the M.(T) and x4 (T} data, obtained by the AA-1 method,
from the KF and CTS fits. The important points that emerge from the analysis presented
above (tables 2 and 3) are as follows: (i) The value of T, does not depend on whether the
data analysis includes the CTS terms or not, whereas the same is not truc for the asymptotic
and effective critical amplitudes and critical exponents. (i) M (T) and (T data for
a given composition obtained through the same extrapolation method (AA-1 or AA-II) yield
practically the same value for T;. (iii) Unlike asymptotic critical exponents and ‘correction-
to-scaling’ amplitudes, Curie temperature and asymptotic critical amplitudes depend on the
type of extrapolation used. (iv} The AC susceptibility data and the extrapolated ‘zero-field’
susceptibility data yield identical values (within the uncertainty limits) for all parameters
except for T' and Tex(T,} in the case of the alloy with x = 10 (x = 16). Note that the
value of T, for the alloy with x = 16 deduced from the M{H, T) data is higher than that
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Figure 11. The data shown in figure 8 replotted in the form of M /# versus (H/M)"? (modified
Arrott plot).

determined from the yx,.(T) data because the M (H, T} measurements were performed after
some amount of structural relaxation had occurred in the sample when it was heatedt to
temperatures as high as 400 K during .. (T) measurements,

In order to determine the value of the critical exponent 3, the M versus H isotherms
taken at temperatures ranging between the extreme values of T, yielded by the above-
mentioned analysis of the extrapolated M(T) and xg Y(T) data, and of x,.(T) data, are
least-squares-fitted to either of the relations

t The ‘*kink-point’ measurement taken after completing the x,.(T) experimental run revealed slight increase in
7 indicating thereby that some amount of stress relief had occurred in this sample. In view of this finding, the
FegyNigyBap sample was annealed at different temperatures between 400 and 450 K for different durations of
timme and ‘kink-point’ (and hence 7.} was monitored after every heat treatment. The electrical resistivity and bulk
magnetization measurements were performed on this sample only after ensuring that the subsequent annealing
treatment did not increase T. further. It is, therefore, not surprising that both types (2(T) and M(H, T)) of
measurements yield the same value {(within the error limits) of T, for this sample.
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Figure 12. Spontaneous magnetization, M, as a function of temperature. For the sake of clarity,
only one-quarter of the total number of data points are shown in this fgure, The full curves
through the data points represent the best ieast-squares fits to the data based on equation (9).

M = AgH?
€ =0. (12)
H = DM?

It is evident from (12} that a plot of In M against In B should be a straight line with slope
8~" and intercept on the ordinate equal to In Ag for the critical isotherm M(H, T = T.).
Figure 18 depicts such a plot for a-Fe¢NigeB19S1,. A cursory glance at this figure suffices to
reveal that only the isotherm taken at T = T, is indeed a straight line, whereas the isotherms
for T # T. exhibit a concave-upward and concave-downward curvature for temperatures
just below and above T.. The curvature in such isotherms becomes more pronounced as
the temperature at which a given isotherm is taken deviates more and more from T.. These
features of the M (H, T) data displayed by figure 18 represent a characteristic property that
the amorphous alioys investigated in this work share with other amorphous ferromagnetic
alloys studied earlier [22~24]. Moreover, such plots not only allow determination of the
crifical exponent § and critical amplitude Ag (note that the critical amplitudes D and Ay in
equations (12) are related as D = Ag %) from the slope and intercept on the ordinate of the
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Figure 13. Temperature dependence of the inverse initial susceptibility, xo 1 in the critical
region for amorphous Fe, Nigo_x(B,Si)20 alloys. For the sake of clanty, only one-guarter of the
total number of data points are shown in this figure. The full curves through the data points
denote the best least-squares fits to the data based on equation (2).

critical isotherm, respectively, but also of the Curie temperature jtself. The values of T, 8
and ¥ determined in this way are listed in tables 4 and 5.

4. Discussion

The experimentally determined values of the asymptotic (o®, B, ¥, &) and leading
‘correction-to-scaling’ (A, Ag) critical exponents and of the universal ratios involving
asymptotic and ‘correction-to-scaling’ zero-field specific heat and initial susceptibility
amplitudes are compared with those predicted by the RG theories [35,37,38,40-44] for
pure d = n == 3 spin systems with or without isotropic dipolar long-range (IDL) interactions
in tables 4-6. With reference to the numerical values for different physical parameters
displayed in the tables, the main points that merit attention are the following: (i) The
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Figure 34. The quantities X {T) and ¥(T), deduced from the bulk magnetization (gM) data, as
functions of (reduced) temperature, € = (T — T}/ T¢, for amorphous Fe, Nigg-x(B.Si)zg alloys.
In order to highlight the agreement between the M and AC susceptibility (acs) dats, the values
of the quantity X (T) at a few representative temperatures obtained from the Acs data (figure 4)
are also included in this figure. For the sake of clarity, only one-quarter {(one-eighth) of the total
number of data points for ¥(T') (X (7)) and the KF fits only to the X (T) and Y (T} data, deduced
from the Xu_l (T) and My(T) data, obtained by the AA-f extrapolation method, are shown in this
figure.

‘zero-field’ measurements p(T) and . (T) yield practically the same value for T, whereas,
considering the relatively large uncertainty in the values obtained through the extrapolation
methods AA-1 and AA-TI, this value also conforms well with those deduced using the methods
AA-l and AA-H (except for the alloy with x = 16 for the reasons already mentioned in the
earlier section and in the footnote). (ii) The KF and CTS analyses of the yxu.(7) and the
extrapolated (T} data give identical (within the uncertainty limits) results. (iii) The scaling
relations et = o™, 8+ = B8 and @ + y = 2(1 — B) are obeyed to a high degree of
accuracy. (iv) Consistent with o < 0, the ratio (Bt — A* /o) /(B~ — A~ /a7) =~ 1. (v}
The exponents o=, 8, y, §, A and A,, and the amplitude ratios A*/A~, a}y jag, abjas,
a} /a}y and a}/a}, do not depend on composition. (vi) The ratios ¢ /a; (= 0.1040.05)
and g, fa7, (= 742) characteristic of feromagnets with quenched random disorder seem
to be universal like the corresponding ratios ajz/a;z and ai’z/az'z in the case of ordered



7426 S N Kaul and M 8 Rao

BM AA~I [FexNiso—x(B.Si);0]  BM AA-II
) : 0.43
TTIAE | Xx=10
o L b 0.40
0.43 _ 0.37
T 0.41
o
W 0.39
£
<
0.40
- 0.37
0.34 i
0.31 b L it
0.001 0.01 0.001 0.01
e=(T—Tc)/Te

Figure 15. Variation of the effecrive critical exponent for spontanecus magnetization, S5, with
temperature. The full curves and broken straight lines through the datz points represent the
least-squares fits to the data based on equations (9) and (10), respectively.

spin systems. (vii) The experimental values of «, 8, y, &, Ay, Az, A¥/A™, a:.:a/"c_zv
ab /@y, mo/Ms(0) and Dm/ ho match very well the RG estimates for the pure n =d = 3
spin system with isotropic Heisenberg short-range (ISR) and/or IDL interactions, but the
observed values of the ratic poho/kpT. are at least one order of magnitude lower than
the 3D Heisenberg value. (viii} The theoretical value for the ratio mg/M;(0) is in closer
agreement with the values yielded by the CTS analysis than with those given by the KF
analysis; this finding underscores the need to include the CTS terms in the data analysis.
While an excellent agreement between the values of 7; determined from o(T) and x..(T)
measurements (observation (i) above) refutes the earlier claim [28] that the low-field AC
susceptibility is not well suited to study critical behaviour in metallic glasses, the observation
(i1) asserts that the deviations from the linear modified Arrott plot isotherms at low fields
are of no consequence as far as the asymptotic critical behaviour is concerned (this point
will be further substantiated later). Validity of the scaling relations between different critical
exponents (exponent equalities) demands that the magnetization data taken in the critical
region should satisfy the scaling equation of state (SES)

m = fx(h) (13)

where plus and minus signs refer to temperatures above and below T; and m = M/|¢)? and
h = H/|¢|P*Y are the scaled magnetization and scaled fields, respectively, Equation (13}
implies that m as a function of & falls on two different universal curves: f_(k) fore <0
and fi(h) for ¢ > 0. Instead of following the customary approach of plotting Inm against
Ink to ascertain if (13) is obeyed, the magnetization data are tested against an alternative
form of SES, i.e.

m? = Fay + ba(h/m) (14)
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Figure 16. Temperature dependence of the effective critical exponent for initial susceptibility,
Veir. The full curves and broken straight lines through the data points represent the least-squares
fits to the data based on equations (2) and (3), respectively.

for two main reasons. First, even the slightest deviations of the data from the universal
curves f_(h) and f,(h), which do not show up clearly in a Inm versus Ink plot because
of the insensitive nature of the double-logarithmic scale, can be discerned with ease when
the same data are plotted in the form of m? versus (h/m) plot. Second, the use of the
SES form given by (14) permits an independent determination of the critical amplitudes
my = a'? and ho/mo = a4 /b,y from the intercepts of the universal curves with m? and
h/m axes, respectively, in a m? versus /m plot and thereby provides a cross-check for
the corresponding values obtained earlier by the K¥ and/or T8 analysis. A representative
m? versus h/m plot, which demonstrates the validity of (14) is shown in figure 19. It
should be emphasized at this stage that the sensitivity of even such a plot does not suffice
to distinguish clearly between the values of effective and true asympiotic critical exponents
in the present case for the following reason. For temperatures in close proximity to T,
where a distinction between exponents slightly differing in magnitude should, in principle,
be possible, the values of m? for a single isotherm span three or more decades, and in order
to assess the quality of the data collapse onto the universal curves, the m? versus k/m plot
has to accommodate a number of such isotherms and hence data values differing by several
orders of magnitude at the expense of the sensitivity. However, the values of asymptotic
critical amplitudes ag and (fg/mp) computed from the intercepts of the universal curves
s0 obtained exactly coincide with those listed in tables 2 and 3. Another important point
to note is that, in sharp contrast with the low-field behaviour of the modified Arrott plot
isotherms (figure 11}, no deviations of the data points from the universal curves at low fields
are discernible. This finding comoborates our earlier inference that such low-field deviations
have no bearing on the critical behaviour. We now consider the physical implications of the
considerably lower value of the ratio poho/ksT: for the glassy alloys in question compared
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Figure 17. Percentage deviation of the Mi(e) and x5 1(e} data, obtained by the Aa-n
extrapolation method, from the kF (full symbols) and 15 (open symbols) feast-squares fits.
The arrows indicate the crossover temperature e,

with that for the isotropic 3D NN Heisenberg ferromagnets (the aforementioned observation
(vii)). Since ko could presumably be identified with an effective exchange interaction field,
the product of /g and an average effective elementary moment (itq) involved in the FM—PM
phase transition, i.e. the effective exchange energy j.zho, should equal the thermal energy
kpT. at T = T,. Obviously, this is not true for the investigated amorphous alloys (table 5)
unless per has a much higher value than gg (average magnetic moment per alloy atom at
0 K). Considering the fact that the asymptotic and CTS$ critical exponents as well as all other
amplitude ratios possess 3D NN Heisenberg values, the ratio pohg/kgT: is also expected
to equal the 3D Heisenberg estimate of 1.58. This is possible only when .5 takes on the
values given in table 5. Moreover, if the concentration of such effective moments is ¢, then
¢ = po/Merr. The values of ¢ so calculated are included in table 5. It is evident from these
numerical estimates that only a small fraction of moments (i.e. the Fe spins in the present
case because Ni atoms in a-Fe,Nigg—,B1951; alloys are known [23] to carry negligibly small
moment) actually participates in the FM—PM phage transition and this fraction reduces further
as the critical concentration (x} ~ 2.5 at.% Fe for the alloy series in question [15, 25, 30])
is approached along the FM~PM transition line in the magnetic phase diagram [15] from
above. An important consequence of this is that the leading singularity at 7 = T; can be
detected only in dpy(T)/dT but not in Cy(T) (section 3.1).

The result (observations {v) and (vii) above) that the asymptotic and correction-to-scaling
critical exponents as well as the amplitude ratios retain their ‘pure’ values [35-38,40, 44]
regardiess of the alloy composition in the reduced temperature range where, according to the
‘unconventional’ RG theory [9-12], a crossover to the new composition-dependent exponents



Asymptotic critical behaviour of quenched REHM ferromagnets 7429

5.3
sesss T=330 70
s44++ T=340.61
Aok ok kK ¥=gi:1|15
| xxxxx [= .44
50 I foeesT=341063
ssess T=341.81T
4.7 F assaaT=34100Q
= ooooo T=342.24
rwnnw (=342 46
= . YRR Y ¥:34283
+hbed T=343 .42
4.4 2 nonoe T=344.44
i *
)
41 F ’
’ + |F315NIG4B19811|
3 8 R 1 1 1 1 H
4 5 6 7 8 9 10

in H

Figure 18. The ln M versus In / isotherms at a few temperatures around the Curie temperature
T; for a-Fe sNigsB9Si;. The full stroight line through the data represents the best least-squares
fit to the critical isotherm (7; = 341.81 K) based on equation {12} of the text. This plot is
representative of the remaining compositions in the investigated allay seres,

should have already taken place testifies to the validity of the theoretical predictions, based
on the ‘conventional’ RG theories, that the critical behaviour of an ordered # = d = 3 spin
system with o, < O remains unaltered in the presence of quenched disorder (and hence
to the correctness of the Harris criterion). However, such an agreement between theory
and experiment can be put in proper context only when due consideration is given to the
following remarks. First, the reliability of the theoretical estimates for some of the quantities
quoted in tables 46 and obtained through an extrapolation {13] of RG g-expansion results
to 8 =4 —d =1 is often hard to assess [30]. Thus the role of IDL interactions, if present,
can be evaluated better by comparing the experimental values of certain quantities like the
exponent & and the ratio A* /A~ with those determined experimentally for pure n =d = 3
spin systems with or without IDL interactions rather than with the theoretical values whose
reliability is in doubt. Considering that the antiferromagnet RbMnF; and ferromagnet
EuS are ideal examples of pure ISR exchange and ISR plus IDL exchange n = d = 3
spin systems, respectively, the presently determined values of o and A*/A~ should be
compared with the reported [45,46] values oo = —0.10 and AT/A™ = 1.28 £ 0.02 for
RbMnF; and o = —0.,124 £ 0.016 and A*/A™ = 1,54 & 0.09 for EuS, By demonstrating
that the values of & determined in this work are the same (within the error limits) as those
reported for RbMnF3 and EuS but the A*/A™~ ratio closely conforms only with the value
quoted for EuS, this comparison strongly suggests that the IDL interactions are present
and affect the asymptotic critical behaviour in the quenched random bond- and site-diluted
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Table 6. Comparison between experimentally determined and theoretically predicted values for
the specific heat asymptotic critical exponent and amplitude ratios, and for the ratios involving
specific heat and susceptibility ‘correction-to-scaling” eritical amplitudes. 30 Heisenberg results
from [13] and [41]-[44].

Alloy
composition, Method/
Fe/NU/B/S analysis atfe AtjA- aljag abhjes 4t fay) ah/at
10/70/19/1 dp/dT 1.00(%) 1.54(3) 0.08(4) 1.04(50)
ACS 7.720) 4.5(10)
BM,AA-LCTS 6.2(30) 4.5(20)
BM,AA-ILCTS 7.4(30) 4.5(20)
13/67/19/1 dp/dT 0.98(9) 1.513) 0.10(5) 1.00{50)
ACS 7.1(25) 4.9(10)
BM,AALCTS 8.3(50) 4.9(20)
BM,AA-ILCTS 7.8(45) 4.5(20)
16/64/19/1 dp/dT 0.9%(9) 1.49(3) 0.11(4) 1.03(40)
ACS 5.6(15) 4.5(10)
BM,AA-LCTS 5.6(25) 45010
BM,AA-ILCTS 5.6(20) 4.4(10)
20/60/20/0 dp/dT 0.99(4) 1.48(3) 0.13(2) 1.02(3)
BM,AALCTS 6.7(20) 4.9(10)
BM,AA-IL,CTS T.0020) 4.5(10)
D
Heisenberg 1.00 1.51(2) 1.00 4.6(5)

Abbrevigrions: aa, asymptotic analysis; ACS, AC susceptibility; 8M, bulk magnetization; CTS, ‘correction-to-scaling’
analysis; dg/dT, temperature derivative of resistivity.

3D Heisenberg spin systems under consideration. Second, the fact that the percolation
concentration [15,25,30] p. =~ 2.5/80 = 0.031 for a-(Fe,Nigp-,)B155i; alloy series lies
well below the critical concentrations for bond- and site-percolation for nearest-neighbour
(NN) exchange interactions on the FCC lattice [47] (which forms an adequate description
[16,26] of the NN atomic configuration in the glassy alloys in question), i.e. p? = 0.119 and
Pt = 0.195, respectively, indicates that the exchange interactions in these non-crystalline
materials are not confined to the nearest neighbours only but their range extends far beyond
[47] third NN distance (rs,,); the range of exchange interactions is, however, (oo short
in comparison with the spin—spin correlation length (at T ~ T.), which is known [48] to
diverge at T, even for compositions x = x. in a-(Fe,Ni)-M alloy systems. By conirast,
the ‘conventional’ RG theories are based on quenched random site- and/or bond-diluted
nearest-neighbour Heisenberg model. Third, since the alloys with x < x. exhibit spin-
glass-like [15] behaviour, long-range RKKY interactions are expected to be present even for
samples with composition x 2z x. besides the dominant direct Heisenberg isotropic exchange
interactions (ILRr), which extend well beyond ray;, and IDL interactions. Based on the present
results, one is tempted to conclude that the critical behaviour of n = & = 3 spin systers
with LR and IDL interactions is preserved in the presence of RKKY interactions, Though
this deduction is consistent with the prediction of a recent theory [49], which treats RKKY
interactions within the framework of the spherical model for a ferromagnet with simple
cubic lattice, rigorous theoretical calculations, which deal with a 3D Heisenberg spin system
in which spins are interacting with one another via long-range isotropic exchange {range far
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Figure 19. The m? versus k/m scaling plot for a-FesNigsB198i). Similar scaling plots are
obtained for other compositions,

exceeding ry,,), IDL and RKKY interactions, are called for, on the theoretical front, whereas
the experimental results of the type presented in this paper on compositions very close to
X, are needed, on the experimental side, to pinpoint the role of RKKY interactions since
they are comparable in strength to the direct isotropic Heisenberg interactions for x =~ x,.
Experimental investigations of the asymptotic critical behaviour in alloys with composition
just above x, are planned in future.

5. Conclusions

The results of the present investigation permit us to draw the following conclusions:

In conformity with the Harris criterion and the predictions of the ‘conventional’
RG theories, asymptotic critical behaviour of quenched random-exchange Heisenberg
ferromagnets is the same as that of the pure (ordered) n = d = 3 spin system with oz, < O.
This conclusion is based on the observation that the asymptotic and ‘correction-to-scaling’
critical exponents and the corresponding amplitude ratios remain unaltered from their pure
values as the critical concentration is approached along the FM—PM phase transition line of
the magnetic phase diagram.

The effect of the IDL interactions of the type {(gsup)?/r?ld(rur,/r?) — 8,,154S?,
where g; is the splitting factor and d is the space dimensionality, on the asymptotic critical
behaviour is mainly felt through the enhanced value of the A* /A~ ratio as these interactions
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leave other universal amplitude ratios and critical exponents practically unaltered from their
values in the ISR case,

Only a small fraction of spins (moments) actually participates in the FM-PM transition for
compositions not too far above the critical concentration and this fraction reduces further at a
very rapid rate as x — x;. This result is of paramount importance as far as the understanding
of re-entrant behaviour at low temperatures in ferromagnets with composition just above x,
is concerned.

The amplitude ratios a7} /a_; and @] /a;

1> Characteristic of ferromagnets with quenched
random disorder, are universal in the same sense as the ratios ak/ay and af/af, are
for ordered (erystalline} ferromagnets. No theoretical estimates are presently available for
the former set of ratios. It is hoped that the present results will motivate theorists to
undertake calculation of these ratios and thereby significantly contribute to the understanding
of asympitotic critical behaviour of quenched random-exchange Heisenberg ferromagnets.

Since crossover to a random fixed point, characterized by a set of rew critical exponents
whose values substantially differ from the 3D Heisenberg ones, has not been observed even
for temperatures as close to T, as € ~ 10~*, long-range anisotropic dipolar interactions and
isofropic long-range exchange interactions of the form —(Joor¥9)85- 5, where 0 <o < 2
and o < (2 — 1), which render ISR Heisenberg fixed point unstable, are both absent in the
glassy alloys in question.

That the universality hypothesis, which asserts that the range and type of interaction
both are of no consequence as long as the spin-spin correlation length diverges at Tg, is
basically correct is vindicated by the result that the 1SR Heisenberg-like critical behaviour is
retained despite the presence of long-range direct exchange interactions (range far exceeding
ray but 100 short compared to the spin-spin correlation length).
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